Show simple item record

dc.contributor.authorAYKENT, Baris
dc.contributor.authorPAILLOT, Damien
dc.contributor.author
 hal.structure.identifier
KEMENY, Andras
133641 Technocentre Renault [Guyancourt]
dc.contributor.author
 hal.structure.identifier
MERIENNE, Frédéric
22594 Laboratoire Electronique, Informatique et Image [UMR6306] [Le2i]
dc.date.accessioned2013
dc.date.issued2013
dc.date.submitted2013
dc.identifier.issn0143-2087
dc.identifier.urihttp://hdl.handle.net/10985/7337
dc.description.abstractThis study proposes a method and an experimental validation to analyze dynamics response of the simulator's cabin and platform with respect to the type of the control used in the hexapod driving simulator. In this article, two different forms of motion platform tracking control are performed as a classical motion cueing algorithm and a discrete-time linear quadratic regulator (LQR) motion cueing algorithm. For each situation, vehicle dynamics and motion platform level data are registered from the driving simulation software. In addition, the natural frequencies of the roll accelerations are obtained in real-time by using FFT. The data are denoised by using wavelet 1D transformation. The results show that by using discrete-time LQR algorithm, the roll acceleration amplitudes that correspond to the natural frequencies and the total roll jerk have decreased at the motion platform level. Also, the natural frequencies have increased reasonably by using the discrete LQR motion cueing (1.5–2.2 Hz) compared with using the classical algorithm (0.4–1.5 Hz) at the motion platform, which is an indicator of motion sickness incidence avoidance. The literature shows that lateral motion (roll, yaw, etc.) in the frequency range of 0.1–0.5 Hz induces motion sickness. Furthermore, using discrete-time LQR motion cueing algorithm has decreased the sensation error (motion platform–vehicle (cabin) levels) two times in terms of total roll jerk. In conclusion, discrete-time LQR motion cueing has reduced the simulator sickness more than the classical motion cueing algorithm depending on sensory cue conflict theory.
dc.description.sponsorshipArts et Metiers ParisTech built up the SAAM driving simulator with the partnership of Renault and Grand Chalon. This research was realized in the framework of the geDRIVER project.
dc.language.isoen
dc.publisherWiley
dc.rightsPost-print
dc.subjectoptimal control
dc.subjectlinear quadratic regulator (LQR)
dc.subjectdiscrete-time control
dc.subjectmotion cueing
dc.subjectwashout
dc.subjectdriving simulator
dc.titleInfluence of a new discrete-time LQR-based motion cueing on driving simulator
dc.identifier.doi10.1002/oca.2081
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationInstitut de Chalon sur Saône
dc.subject.halMathématique: Optimisation et contrôle
dc.subject.halInformatique: Automatique
dc.subject.halInformatique: Interface homme-machine
dc.subject.halSciences de l'ingénieur: Automatique / Robotique
dc.subject.halSciences de l'ingénieur: Mécanique: Génie mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Vibrations
ensam.audienceInternationale
ensam.pageDOI: 10.1002/oca.2081
ensam.journalOptimal Control Applications and Methods
ensam.volume35
hal.identifierhal-00866643
hal.version1
hal.submission.permittedupdateMetadata
hal.statusaccept
dc.identifier.eissn1099-1514


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record