Show simple item record

dc.contributor.author
 hal.structure.identifier
HAUPERT, Sylvain
1152 Laboratoire d'Imagerie Paramétrique [LIP]
dc.contributor.author
 hal.structure.identifier
GUERARD, Sandra
164351 Institut de Mécanique et d'Ingénierie de Bordeaux [I2M]
dc.contributor.author
 hal.structure.identifier
PEYRIN, Françoise
2568 European Synchrotron Radiation Facility [ESRF]
dc.contributor.author
 hal.structure.identifier
MITTON, David
222174 Laboratoire de Biomécanique et Mécanique des Chocs [LBMC UMR T9406]
dc.contributor.author
 hal.structure.identifier
LAUGIER, Pascal
1152 Laboratoire d'Imagerie Paramétrique [LIP]
dc.date.accessioned2014
dc.date.available2014
dc.date.issued2014
dc.date.submitted2014
dc.identifier.issn1932-6203
dc.identifier.urihttp://hdl.handle.net/10985/7675
dc.description.abstractThe objective of the study was to evaluate the ability of a nonlinear ultrasound technique, the so-called nonlinear resonant ultrasound spectroscopy (NRUS) technique, for detecting early microdamage accumulation in cortical bone induced by four-point bending fatigue. Small parallelepiped beam-shaped human cortical bone specimens were subjected to cyclic four-point bending fatigue in several steps. The specimens were prepared to control damage localization during four-point bending fatigue cycling and to unambiguously identify resonant modes for NRUS measurements. NRUS measurements were achieved to follow the evolution of the nonlinear hysteretic elastic behavior during fatigue-induced damage. After each fatigue step, a small number of specimens was removed from the protocol and set apart to quantitatively assess the microcrack number density and length using synchrotron radiation micro-computed tomography (SR-µCT). The results showed a significant effect of damage steps on the nonlinear hysteretic elastic behavior. No significant change in the overall length of microcracks was observed in damaged regions compared to the load-free control regions. Only an increased number of shortest microcracks, those in the lowest quartile, was noticed. This was suggestive of newly formed microcracks during the early phases of damage accumulation. The variation of nonlinear hysteretic elastic behavior was significantly correlated to the variation of the density of short microcracks. Our results suggest that the nonlinear hysteretic elastic behavior is sensitive to early bone microdamage. Therefore NRUS technique can be used to monitor fatigue microdamage progression in in vitro experiments.
dc.description.sponsorshipBONUS_07BLAN0197
dc.language.isoen_US
dc.publisherPublic Library of Science
dc.rightsPost-print
dc.subjectBehavior
dc.subjectBending
dc.subjectBone density
dc.subjectBone matrix
dc.subjectDamage mechanics
dc.subjectMaterial fatigue
dc.subjectNonlinear dynamics
dc.subjectUltrasound imaging
dc.titleNon Destructive Characterization of Cortical Bone MicroDamage by Nonlinear Resonant Ultrasound Spectroscopy
dc.identifier.doi10.1371/journal.pone.0083599
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Paris
dc.subject.halSciences de l'ingénieur: Matériaux
dc.subject.halSciences de l'ingénieur: Mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Biomécanique
dc.subject.halSciences de l'ingénieur: Traitement du signal et de l'image
ensam.audienceInternationale
ensam.page1-11
ensam.journalPLoS ONE
ensam.volume9
ensam.issue1
hal.identifierhal-00925167
hal.version1
hal.statusaccept
dc.identifier.eissn1932-6203


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record