Show simple item record

dc.contributor.author
 hal.structure.identifier
RODRIGUEZ MARTINEZ, José Antonio
207423 Department of Continuum Mechanics and Structural Analysis
dc.contributor.author
 hal.structure.identifier
RUSINEK, Alexis
207424 Laboratoire de mécanique Biomécanique Polymère Structures [LaBPS]
dc.contributor.author
 hal.structure.identifier
ZAERA, Ramon
207423 Department of Continuum Mechanics and Structural Analysis
dc.contributor.author
 hal.structure.identifier
PESCI, Raphaël
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
dc.date.accessioned2014
dc.date.available2014
dc.date.issued2013
dc.identifier.citationInternational Journal of Solids ans Structures, 50, 339-351
dc.identifier.issn0020-7683
dc.identifier.urihttp://hdl.handle.net/10985/7806
dc.descriptionLien vers la version éditeur: http://www.sciencedirect.com/science/article/pii/S0020768312004039
dc.description.abstractIn this work, an experimental and numerical analysis of the martensitic transformation in AISI 304 steel sheets subjected to perforation by conical and hemispherical projectiles is conducted. Experiments are performed using a pneumatic gas gun for with the impact velocities in the range of 35 m=s < V0 < 200 m=s. Two target thicknesses are examined, t1 ¼ 0:5 mm and t2 ¼ 1:0 mm. The experimental setup enabled the determination of the impact velocity, the residual velocity and the failure mode of the steel sheets. The effect of the projectile nose shape on the target’s capacity for energy absorption is evaluated. Moreover, martensite is detected in all the impacted samples, and the role played by the projectile nose shape on the transformation is highlighted. A three-dimensional model is developed in ABAQUS/Explicit to simulate the perforation tests. The material is defined via the constitutive model developed by Zaera et al. (2012) to describe the strain-induced martensitic transformation occurring in metastable austenitic steels at high strain rates. The finite element results are compared with the experimental evidence, and satisfactory matching is observed over the entire range of impact velocities tested and for both projectile configurations and target thicknesses considered. The numerical model succeeds in describing the perforation mechanisms associated with each projectile-target configuration analyzed. The roles played by impact velocity, target thickness and projectile nose shape on the martensitic transformation are properly captured.
dc.description.sponsorshipProject CCG10-UC3M/DPI-5596 (Comunidad Autónoma de Madrid) et DPI2011-24068 (Ministerio de Ciencia e Innovación de España)
dc.language.isoen_US
dc.publisherElsevier
dc.rightsPost-print
dc.subjectPerforation
dc.subjectMartensitic transformation
dc.subjectAISI 304
dc.subjectDynamic failure
dc.subjectNumerical simulations
dc.titleExperimental and numerical analysis on the martensitic transformation in AISI 304 steel sheets subjected to perforation by conical and hemispherical projectiles
dc.identifier.doi10.1016/j.ijsolstr.2012.09.019
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Metz
dc.subject.halSciences de l'ingénieur: Matériaux
ensam.audienceInternationale
ensam.page339-351
ensam.journalInternational Journal of Solids and Structures
ensam.volume50
ensam.issue2
hal.identifierhal-00953554
hal.version1
hal.statusaccept


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record