Show simple item record

dc.contributor.authorTAUPIN, Vincent
dc.contributor.authorBERBENNI, Stéphane
dc.contributor.authorOUAHAB, Razane
dc.contributor.author
 hal.structure.identifier
BOUAZIZ, Olivier
36484 ArcelorMittal Maizières Research SA
dc.contributor.author
 hal.structure.identifier
BERVEILLER, Sophie
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
dc.contributor.authorPESCI, Raphaël
dc.date.accessioned2014
dc.date.available2014
dc.date.issued2013
dc.date.submitted2014
dc.identifier.issn0921-5093
dc.identifier.urihttp://hdl.handle.net/10985/7858
dc.description.abstractIn situ tensile tests were performed at room temperature on a ferrite–cementite steel specifically designed for this study. The evolution of the average stress in ferrite during loading was analyzed by X-ray diffraction.Lattice strain measurements were performed with synchrotron ring diffraction in both ferrite and cementite.These in situ tests were complemented by macroscopic tensile and reversible tensile-compression tests to study the Bauschinger effect. In order to reproduce stresses in ferrite and cementite particles,a recently developed micromechanical Internal Length Mean Field (ILMF) model based on a generalized self-consistent scheme is applied. In this designed ferrite–cementite steel,the third ‘‘phase’’of the model represents finite intermediate‘‘layers’’in ferrite due to large geometrically necessary dislocation (GND) densities around cementite particles. The assumed constant thickness of the layers is calibrated thanks to the obtained experimental data.The ILMF model is validated by realistic estimates of the Bauschinger stress and the large difference between mean stresses in ferrite and in cementite phases.This difference cannot be reproduced by classic two-phase homogenization schemes without intermediate GND layers.
dc.language.isoen
dc.publisherElsevier
dc.rightsPost-print
dc.subjectSynchrotron radiation
dc.subjectX-ray diffraction(XRD)
dc.subjectDislocations
dc.subjectCarbides
dc.subjectMicromechanical Modeling
dc.titleLattice strain measurements using synchrotron diffraction to calibrate a micromechanical modeling in a ferrite–cementite steel
dc.identifier.doi10.1016/j.msea.2012.10.086
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Metz
dc.subject.halSciences de l'ingénieur: Matériaux
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des matériaux
ensam.audienceInternationale
ensam.page67-77
ensam.journalMaterials Science and Engineering: A
ensam.volume561
hal.identifierhal-00959541
hal.version1
hal.statusaccept


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record