Afficher la notice abrégée

dc.contributor.author
 hal.structure.identifier
SEISSON, G
21150 Centre d'études scientifiques et techniques d'Aquitaine [CESTA]
dc.contributor.author
 hal.structure.identifier
HEBERT, D
21150 Centre d'études scientifiques et techniques d'Aquitaine [CESTA]
dc.contributor.author
 hal.structure.identifier
HALLO, L
21150 Centre d'études scientifiques et techniques d'Aquitaine [CESTA]
dc.contributor.author
 hal.structure.identifier
CHEVALIER, J.M
21150 Centre d'études scientifiques et techniques d'Aquitaine [CESTA]
dc.contributor.authorGUILLET, F
dc.contributor.author
 hal.structure.identifier
BERTHE, Laurent
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
dc.contributor.authorBOUSTIE, Michel
dc.date.accessioned2014
dc.date.available2014
dc.date.issued2014
dc.date.submitted2014
dc.identifier.issn0734-743X
dc.identifier.urihttp://hdl.handle.net/10985/7974
dc.description.abstractCratering experiments have been conducted with 0.5-mm diameter AISI 52100 steel spherical projectiles and 30-mm diameter, 15-mm long graphite targets. The latter were made of a commercial grade of polycrystalline and porous graphite named EDM3 whose behavior is known as macroscopically isotropic. A two-stage light-gas gun launched the steel projectiles at velocities between 1.1 and 4.5 km s 1. In most cases, post-mortem tomographies revealed that the projectile was trapped, fragmented or not, inside the target. It showed that the apparent crater size and depth increase with the impact velocity. This is also the case of the crater volume which appears to follow a power law significantly different from those constructed in previous works for similar impact conditions and materials. Meanwhile, the projectile depth of penetration starts to decrease at velocities beyond 2.2 km s 1. This is firstly because of its plastic deformation and then, beyond 3.2 km s 1, because of its fragmentation. In addition to these three regimes of penetration behavior already described by a few authors, we suggest a fourth regime in which the projectile melting plays a significant role at velocities above 4.1 km s 1. A discussion of these four regimes is provided and indicates that each phenomenon may account for the local evolution of the depth of penetration.
dc.language.isoen
dc.publisherElsevier
dc.rightsPost-print
dc.subjectCratering
dc.subjectPenetration
dc.subjectGraphite
dc.subjectHyper-velocity impact
dc.subjectProjectile trapping
dc.titlePenetration and cratering experiments of graphite by 0.5-mm diameter steel spheres at various impact velocities
dc.identifier.doi10.1016/j.ijimpeng.2014.03.004
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Paris
dc.subject.halSciences de l'ingénieur: Matériaux
dc.subject.halSciences de l'ingénieur: Mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des matériaux
ensam.audienceInternationale
ensam.page14-20
ensam.journalInternational Journal of Impact Engineering
ensam.volume70
hal.identifierhal-00980178
hal.version1
hal.submission.permittedupdateMetadata
hal.statusaccept


Fichier(s) constituant cette publication

Thumbnail

Cette publication figure dans le(les) laboratoire(s) suivant(s)

Afficher la notice abrégée