Afficher la notice abrégée

dc.contributor.author
 hal.structure.identifier
RATERRON, Paul
92973 Université de Lille, Sciences et Technologies
dc.contributor.author
 hal.structure.identifier
DETREZ, Fabrice
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
dc.contributor.author
 hal.structure.identifier
CASTELNAU, Olivier
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
dc.contributor.author
 hal.structure.identifier
BOLLINGER, Caroline
92973 Université de Lille, Sciences et Technologies
dc.contributor.author
 hal.structure.identifier
CORDIER, Patrick
92973 Université de Lille, Sciences et Technologies
dc.contributor.author
 hal.structure.identifier
MERKEL, Sébastien
92973 Université de Lille, Sciences et Technologies
dc.date.accessioned2014
dc.date.available2014
dc.date.issued2014
dc.date.submitted2014
dc.identifier.issn0031-9201
dc.identifier.urihttp://hdl.handle.net/10985/7989
dc.description.abstractWe report a first application of an improved second-order (SO) viscoplastic self-consistent model for multiphase aggregates, applied to an olivine + diopside aggregate as analogue for a dry upper mantle peridotite deformed at 10 15 s 1 shear strain rate along a 20-Ma ocean geotherm. Beside known dislocation slip systems, this SO-model version accounts for an isotropic relaxation mechanism representing ‘diffusionrelated’ creep mechanisms in olivine. Slip-system critical resolved shear stress (CRSS) are evaluated in both phases – as functions of P, T, oxygen fugacity (fO2) and strain rate – from previously reported experimental data obtained on single crystals and first-principle calculations coupled with the Peierls–Nabarro model for crystal plasticity; and the isotropic-mechanism dependence on T and P matches that of Si selfdiffusion in olivine, while its relative activity is constrained by reported data. The model reproduces well the olivine and diopside lattice preferred orientations (LPO) produced experimentally and observed in naturally deformed rocks, as well as observed sensitivities of multiphase aggregate strength to the volume fraction of the hard phase (here diopside). It shows a significant weakening of olivine LPO with increasing depth, which results from the combined effects of the P-induced [100]/[001] dislocation-slip transition and the increasing activity with T of ‘diffusion-related’ creep. This work thus provides a first quantification of the respective effects of [100]/[001] slip transition and diffusion creep on the olivine LPO weakening inducing the seismic anisotropy attenuation observed in the upper mantle.
dc.language.isoen
dc.publisherElsevier
dc.rightsPost-print
dc.subjectUpper mantle
dc.subjectPlasticity
dc.subjectOlivine
dc.subjectDiopside
dc.subjectDislocation
dc.subjectMultiphase aggregate
dc.subjectViscoplastic modeling
dc.titleMultiscale modeling of upper mantle plasticity: From single-crystal rheology to multiphase aggregate deformation
dc.identifier.doi10.1016/j.pepi.2013.11.012
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Paris
dc.subject.halSciences de l'ingénieur: Matériaux
dc.subject.halSciences de l'ingénieur: Mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des matériaux
ensam.audienceInternationale
ensam.page232-243
ensam.journalPhysics of the Earth and Planetary Interiors
ensam.volume228
hal.identifierhal-00980640
hal.version1
hal.submission.permittedupdateMetadata
hal.statusaccept
dc.identifier.eissn0031-9201


Fichier(s) constituant cette publication

Thumbnail

Cette publication figure dans le(les) laboratoire(s) suivant(s)

Afficher la notice abrégée