Show simple item record

dc.contributor.authorBOCQUET, Michel
dc.contributor.author
 hal.structure.identifier
FITOUSSI, Joseph
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
dc.contributor.author
 hal.structure.identifier
MERAGHNI, Fodil
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
dc.date.accessioned2014
dc.date.available2014
dc.date.issued2012
dc.date.submitted2014
dc.identifier.issn1359-8368
dc.identifier.urihttp://hdl.handle.net/10985/8059
dc.description.abstractThis study investigates the origin of the strain rate effect on the mechanical behavior of a discontinuous glass fiber reinforced ethylene–propylene copolymer (EPC) matrix composite. This kind of composite materials are commonly used for automotive functional and structural applications. To this aim, a multi-scale experimental approach is developed. The deformation processes and the damage mechanisms observed at the microscopic scale are related to the material mechanical properties at the macroscopic scale. Tensile tests up to failure and specific interrupted tensile tests have been optimized and performed for high strain rates up to 200 s 1 to quantify the strain rate effect at different scales. High speed tensile tests have also been performed on the pure copolymer matrix. The threshold and the kinetic of damage have been quantified at both microscopic and macroscopic scales. Experimental results show that the composite behavior is strongly strain-rate dependent. The multi-scale analysis leads to the conclusion that the strain rate effect on the damage behavior of the EPC matrix composite is mainly due to the viscous behavior of the EPC matrix. SEM observations and analysis show that a localized deformation in the interface zone around fibers occurs at high strain rates and directly affects the visco-damage behavior. It is established that when the strain rate increases, the local deformation zone around the fibers behaves like a dissipation zone. Consequently, the damage initiation is delayed and the related kinetic is reduced with respect to the quasi-static loading case.
dc.publisherElsevier
dc.rightsPost-print
dc.subjectPolymer–matrix composites
dc.subjectDebonding
dc.subjectInterface/interphase
dc.subjectMicro-mechanics
dc.subjectDamage mechanisms
dc.titleEffect of the matrix behavior on the damage of ethylene–propylene glass fiber reinforced composite subjected to high strain rate tension
dc.identifier.doi10.1016/j.compositesb.2012.06.011
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Metz
dc.localisationCentre de Paris
dc.subject.halSciences de l'ingénieur: Matériaux
dc.subject.halSciences de l'ingénieur: Mécanique
ensam.audienceInternationale
ensam.page1181-1191
ensam.journalComposites Part B: Engineering
ensam.volume45
hal.identifierhal-00984755
hal.version1
hal.submission.permittedupdateFiles
hal.statusaccept
dc.identifier.eissn1879-1069


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record