Show simple item record

dc.contributor.authorANDRE, Damien
dc.contributor.authorCHARLES, Jean-Luc
dc.contributor.author
 hal.structure.identifier
NEAUPORT, Jérôme
21150 Centre d'études scientifiques et techniques d'Aquitaine [CESTA]
dc.contributor.author
 hal.structure.identifier
IORDANOFF, Ivan
164351 Institut de Mécanique et d'Ingénierie de Bordeaux [I2M]
dc.contributor.authorJEBAHI, Mohamed
dc.date.accessioned2014
dc.date.available2014
dc.date.issued2013
dc.date.submitted2014
dc.identifier.issn0045-7825
dc.identifier.urihttp://hdl.handle.net/10985/8263
dc.descriptionThis work was supported by the Conseil Régional d’Aquitaine and was conducted under the auspices of the Etude et Formation en Surfacage Optique (EFESO 2) project. The developments realized in this project were implemented in the GranOO1 project.
dc.description.abstractThe mechanical behavior of materials is usually simulated by a continuous mechanics approach. However, noncontinuous phenomena such as multi-fracturing cannot be accurately simulated using a continuous description. The discrete element method (DEM) naturally accounts for discontinuities and is therefore a good alternative to the continuum approach. This study continues previous work in which a DEM model was developed to quantitatively simulate an elastic material with the cohesive beam bond model. The simulation of brittle cracks is now tackled. This goal is attained by computing a failure criterion based on an equivalent hydrostatic stress. This microscopic criterion is then calibrated to fit experimental values of the macroscopic failure stress. The simulation results are compared to experimental results of indentation tests in which a spherical indenter is used to load a silica glass, which is considered to be a perfectly brittle elastic material.
dc.language.isoen
dc.publisherElsevier
dc.rightsPre-print
dc.subjectDiscrete Element Method
dc.subjectDEM
dc.subjectcalibration
dc.subjectsilica
dc.subjectbrittle
dc.subjectcrack
dc.subjectindentation
dc.subjecthertzian cone
dc.titleUsing the discrete element method to simulate brittle fracture in the indentation of a silica glass with a blunt indenter
ensam.hal.submitrunning
dc.identifier.doi10.1016/j.cma.2013.06.008
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Bordeaux-Talence
dc.subject.halMathématique: Analyse numérique
dc.subject.halSciences de l'ingénieur: Matériaux
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des matériaux
ensam.audienceInternationale
ensam.page136-147
ensam.journalComputer Methods in Applied Mechanics and Engineering
ensam.volume265
hal.statusunsent


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record