Show simple item record

dc.contributor.authorHOR, Anis
dc.contributor.authorROBERT, Camille
dc.contributor.authorPALIN-LUC, Thierry
dc.contributor.author
 hal.structure.identifier
MOREL, Franck
211916 Laboratoire Angevin de Mécanique, Procédés et InnovAtion [LAMPA]
dc.contributor.author
 hal.structure.identifier
SAINTIER, Nicolas
164351 Institut de Mécanique et d'Ingénierie de Bordeaux [I2M]
dc.date.accessioned2014
dc.date.available2016
dc.date.issued2014
dc.date.submitted2014
dc.identifier.issn0142-1123
dc.identifier.urihttp://hdl.handle.net/10985/8394
dc.description.abstractMultiaxial high cycle fatigue modeling of materials is an issue that concerns many industrial domains (automotive, aerospace, nuclear, etc.) and in which many progress still remains to be achieved. Several approaches exist in the literature: invariants, energy, integral and critical plane approaches all of them having their advantages and drawbacks. These different formulations are usually based on mechanical quantities at the micro or mesoscales using localization schemes and strong assumptions to propose simple analytical forms. This study aims to revisit these formulations using a numerical approach based on crystal plasticity modeling coupled with explicit description of microstructure (morphology and texture) and proposes a statistical procedure for the analyses of numerical results in the HCF context. This work has three steps: First, 2.5D periodic digital microstructures based on a random grain sizes distribution are generated. Second, multiaxial cyclic loading conditions corresponding to the fatigue strength at 106 cycles are applied to these microstructures. Third, the mesoscopic Fatigue Indicator Parameters (FIPs), formulated from the different criteria existing in the literature, are identified using the finite element calculations of the mechanical fields. These mesoscopic FIP show the limits of the original criteria when it comes to applying them at the grain scale. A statistical method based on extreme value probability is used to redefine the thresholds of these criteria. These new thresholds contain the sensitivity of the HCF behavior to microstructure attributes. Finally, the biaxiality and phase shift effects are discussed at the grain scale and the loading paths of some critical grains are analyzed.
dc.description.sponsorshipFinancial support of this research by Arts et Métiers Paristech is gratefully acknowledged.
dc.language.isoen
dc.publisherElsevier
dc.rightsPost-print
dc.subjectMultiaxial, High Cycle Fatigue, Copper, Crystal plasticity, Extreme value probability, Finite element analysis
dc.subjectMultiaxial
dc.subjectHigh Cycle Fatigue
dc.subjectCopper
dc.subjectCrystal plasticity
dc.subjectExtreme value probability
dc.subjectFinite element analysis
dc.titleStatistical assessment of multiaxial HCF criteria at the grain scale
ensam.embargo.terms2016-11-01
dc.identifier.doi10.1016/j.ijfatigue.2014.01.024
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Angers
dc.localisationCentre de Bordeaux-Talence
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des matériaux
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des solides
ensam.audienceInternationale
ensam.page151-158
ensam.journalInternational Journal of Fatigue
ensam.volume67
hal.identifierhal-01057879
hal.version1
hal.submission.permittedupdateFiles
hal.statusaccept


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record