Show simple item record

dc.contributor.authorACHOURI, Mohamed
dc.contributor.authorDAL SANTO, Philippe
dc.contributor.authorSAIDANE, Delphine
dc.contributor.author
 hal.structure.identifier
GERMAIN, Guénaël
206863 Laboratoire des Arts et Métiers ParisTech d'Angers - Procédés Matériaux Durabilité [LAMPA - PMD]
dc.date.accessioned2014
dc.date.available2014
dc.date.issued2013
dc.date.submitted2014
dc.identifier.issn0264-1275
dc.identifier.urihttp://hdl.handle.net/10985/8398
dc.description.abstractThe use of HSLA steels for the manufacture of automotive components is interesting from an engineering point of view. This family of steels, while possessing high strength, also has good formability and can be used in forming manufacturing processes. In some forming processes such as blanking, shear strain localization occurs, which causes damage and results in the final fracture of the material. This paper presents an experimental study based on in situ tests to understand and identify the physical mechanisms of ductile damage under two stress states: tension and shear. Different macroscopic tests were performed to calibrate a damage model based on a micromechanical approach. This damage model is based on the Gurson–Tvergaard–Needleman theory and presents recent improvements proposed by Nahshon and Hutchinson and by Nielsen and Tvergaard so as to better predict fracture under a wide range of stress states, especially with low levels of stress triaxiality. These extensions have made the identification of the material parameter more complicated. In this work an identification strategy has been proposed using tests on specimens with different shapes. The identified parameter values are validated and the fracture model show good predictive capability over a wide stress state range.
dc.language.isoen_US
dc.publisherElsevier
dc.rightsPost-print
dc.subjectDuctile fracture
dc.subjectShear modified Gurson model
dc.subjectParameters identification
dc.subjectStress state
dc.subjectPunching process
dc.subjectNumerical simulation
dc.titleExperimental characterization and numerical modeling of micromechanical damage under different stress states
dc.identifier.doi10.1016/j.matdes.2013.02.075
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Angers
dc.subject.halSciences de l'ingénieur: Génie des procédés
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des matériaux
ensam.audienceInternationale
ensam.page207-222
ensam.journalMaterials and Design
ensam.volume50
hal.identifierhal-01057964
hal.version1
hal.statusaccept


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record