Show simple item record

dc.contributor.author
 hal.structure.identifier
BERGAMASCO, Luca
175276 Instituto Tecnologico de Aragon [ITA]
dc.contributor.author
 hal.structure.identifier
IZQUIERDO, Salvador
175276 Instituto Tecnologico de Aragon [ITA]
dc.contributor.author
 hal.structure.identifier
AMMAR, Amine
211916 Laboratoire Angevin de Mécanique, Procédés et InnovAtion [LAMPA]
dc.date.accessioned2014
dc.date.available2014
dc.date.issued2013
dc.date.submitted2014
dc.identifier.issn0377-0257
dc.identifier.urihttp://hdl.handle.net/10985/8462
dc.description.abstractMicro–macro simulations of polymeric solutions rely on the coupling between macroscopic conservation equations for the fluid flow and stochastic differential equations for kinetic viscoelastic models at the microscopic scale. In the present work we introduce a novel micro–macro numerical approach, where the macroscopic equations are solved by a finite-volume method and the microscopic equation by a lattice-Boltzmann one. The kinetic model is given by molecular analogy with a finitely extensible non-linear elastic (FENE) dumbbell and is deterministically solved through an equivalent Fokker–Planck equation. The key features of the proposed approach are: (i) a proper scaling and coupling between the micro lattice-Boltzmann solution and the macro finite-volume one; (ii) a fast microscopic solver thanks to an implementation for Graphic Processing Unit (GPU) and the local adaptivity of the lattice-Boltzmann mesh; (iii) an operator-splitting algorithm for the convection of the macroscopic viscoelastic stresses instead of the whole probability density of the dumbbell configuration. This latter feature allows the application of the proposed method to non-homogeneous flow conditions with low memory-storage requirements. The model optimization is achieved through an extensive analysis of the lattice-Boltzmann solution, which finally provides control on the numerical error and on the computational time. The resulting micro–macro model is validated against the benchmark problem of a viscoelastic flow past a confined cylinder and the results obtained confirm the validity of the approach.
dc.language.isoen_US
dc.publisherElsevier
dc.rightsPost-print
dc.subjectMulti-scale
dc.subjectFinite volume method
dc.subjectLattice Boltzmann method
dc.subjectFENE kinetic model
dc.subjectGPU computing
dc.titleDirect numerical simulation of complex viscoelastic flows via fast lattice-Boltzmann solution of the Fokker–Planck equation
dc.identifier.doi10.1016/j.jnnfm.2013.07.004
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Angers
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des fluides
ensam.audienceInternationale
ensam.page29-38
ensam.journalJournal of Non-Newtonian Fluid Mechanics
ensam.volume201
hal.identifierhal-01061178
hal.version1
hal.statusaccept


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record