Show simple item record

dc.contributor.author
 hal.structure.identifier
AMMAR, Amine
211916 Laboratoire Angevin de Mécanique, Procédés et InnovAtion [LAMPA]
dc.contributor.author
 hal.structure.identifier
CUETO, Elias
161327 Aragón Institute of Engineering Research [Zaragoza] [I3A]
dc.contributor.author
 hal.structure.identifier
CHINESTA, Francisco
10921 Institut de Recherche en Génie Civil et Mécanique [GeM]
dc.date.accessioned2014
dc.date.available2014
dc.date.issued2012
dc.date.submitted2014
dc.identifier.issn2040-7939
dc.identifier.urihttp://hdl.handle.net/10985/8467
dc.description.abstractThe numerical solution of the chemical master equation (CME) governing gene regulatory networks and cell signaling processes remains a challenging task owing to its complexity, exponentially growing with the number of species involved. Although most of the existing techniques rely on the use of Monte Carlo-like techniques, we present here a new technique based on the approximation of the unknown variable (the probability of having a particular chemical state) in terms of a finite sum of separable functions. In this framework, the complexity of the CME grows only linearly with the number of state space dimensions. This technique generalizes the so-called Hartree approximation, by using terms as needed in the finite sums decomposition for ensuring convergence. But noteworthy, the ease of the approximation allows for an easy treatment of unknown parameters (as is frequently the case when modeling gene regulatory networks, for instance). These unknown parameters can be considered as new space dimensions. In this way, the proposed method provides solutions for any value of the unknown parameters (within some interval of arbitrary size) in one execution of the program.
dc.description.sponsorshipSpanish Ministry of Science and Innovation (CICTY-DPI2011-27778-C02-010)
dc.language.isoen_US
dc.publisherJohn Wiley and Sons
dc.rightsPost-print
dc.subjectGene regulatory networks
dc.subjectChemical master equation
dc.subjectCurse of dimensionality
dc.subjectProper generalized decomposition
dc.titleReduction of the chemical master equation for gene regulatory networks using proper generalized decompositions
dc.identifier.doi10.1002/cnm.2476
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Angers
dc.subject.halSciences de l'ingénieur: Mécanique: Biomécanique
ensam.audienceInternationale
ensam.page960-973
ensam.journalInternational Journal for Numerical Methods in Biomedical Engineering
ensam.volume28
ensam.issue9
hal.identifierhal-01061274
hal.version1
hal.statusaccept
dc.identifier.eissn2040-7947


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record