Show simple item record

dc.contributor.author
 hal.structure.identifier
AMMAR, Amine
211916 Laboratoire Angevin de Mécanique, Procédés et InnovAtion [LAMPA]
dc.contributor.author
 hal.structure.identifier
FURET, Benoit
21439 Institut de Recherche en Communications et en Cybernétique de Nantes [IRCCyN]
dc.contributor.author
 hal.structure.identifier
GERMAIN, Guénaël
206863 Laboratoire des Arts et Métiers ParisTech d'Angers - Procédés Matériaux Durabilité [LAMPA - PMD]
dc.contributor.authorAYED, Yessine
dc.date.accessioned2014
dc.date.available2014
dc.date.issued2013
dc.date.submitted2014
dc.identifier.issn0043-1648
dc.identifier.urihttp://hdl.handle.net/10985/8608
dc.description.abstractThis article presents the results of an experimental study on the Ti17 titanium alloy, which was carried out to analyze tool wear and the degradation mechanisms of an uncoated tungsten carbide tool insert. Two machining conditions, roughing and finishing, have been studied under different lubrication conditions. The experimental procedure included measurement of the cutting forces and the surface roughness. Different techniques have been used to explain the tool wear mechanisms. Distribution maps of the elemental composition of the titanium alloy and the tool inserts have been created using Energy Dispersive X-ray Spectroscopy (EDS). An area of material deposition on the tool rake face, characterized by a high titanium concentration has been observed. The width of this area and the concentration of titanium, decrease when increasing water jet pressure. The study shows that wear mechanisms, with and without high-pressure water jet assistance (HPWJA) are not the same. For example, for the roughing condition using conventional lubrication, the temperature in the cutting area becomes very high, this causes plastic deformation of the cutting edge which results in its rapid collapse. By contrast, this problem disappears when machining with HPWJA. In addition, the evolution of flank wear (VB) is stabilized with high-pressure lubrication. In this case, the most critical degradation mode is due to notch wear (VBn) leading to the sudden rupture of the cutting edge.
dc.description.sponsorshipRégion Pays de la Loire
dc.language.isoen
dc.publisherElsevier
dc.rightsPost-print
dc.subjectWater jet assisted machining
dc.subjectTool wear mechanisms
dc.subjectEDS analysis
dc.subjectSurface roughness
dc.subjectTool life
dc.subjectTitanium alloy
dc.titleDegradation modes and tool wear mechanisms in finish and rough machining of Ti17 Titanium alloy under high-pressure water jet assistance
dc.identifier.doi10.1016/j.wear.2013.06.018
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Angers
dc.subject.halSciences de l'ingénieur: Génie des procédés
dc.subject.halSciences de l'ingénieur: Mécanique
ensam.audienceInternationale
ensam.page228-237
ensam.journalWear
ensam.volume305
ensam.issue1-2
hal.identifierhal-01068090
hal.version1
hal.statusaccept


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record