Show simple item record

dc.contributor.authorBEN HASSINE, Mouna
dc.contributor.author
 hal.structure.identifier
NAÏT-ABDELAZIZ, M
1252 Laboratoire de Mécanique de Lille - FRE 3723 [LML]
dc.contributor.author
 hal.structure.identifier
ZAÏRI, F
1252 Laboratoire de Mécanique de Lille - FRE 3723 [LML]
dc.contributor.authorTOURCHER, C
dc.contributor.authorMARQUE, Gregory
dc.contributor.author
 hal.structure.identifier
COLIN, Xavier
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
dc.date.accessioned2014
dc.date.available2014
dc.date.issued2014
dc.date.submitted2014
dc.identifier.issn0167-6636
dc.identifier.urihttp://hdl.handle.net/10985/8623
dc.description.abstractIn this contribution, we attempt to derive a tool allowing the prediction of the stretch ratioat failure in rubber components subjected to thermal ageing. To achieve this goal, the mainidea is to combine the fracture mechanics approach and the intrinsic defect concept. Using an accelerated ageing procedure for an Ethylene–Propylene–Diene Monomer (EPDM), it is first shown that the average molar mass of the elastically active chains (i.e. between crosslinks) can be used as the main indicator of the macromolecular network degradation. Byintroducing the time–temperature equivalence principle, a shift factor obeying to an Arrhenius law is derived, and master curves are built as well for the average molar mass as for the ultimate mechanical properties. Fracture mechanics tests are also achieved and the square root dependence of the fracture energy with the average molar mass is pointed out. Moreover, it is shown that the mechanical response could be approximated by the phantom network theory, which allows to relate the strain energy density function to the average molar mass. Assuming that the fracture of a smooth specimen is the consequence of a virtual intrinsic defect whose the size can be easily estimated, the stretch ratio at break can be therefore computed for any thermal ageing condition. The estimated values are found in a very nice agreement with EPDM experimental data, making this approach a useful tool when designing rubber components for moderate to high temperature environments.
dc.language.isoen
dc.publisherElsevier
dc.rightsPost-print
dc.subjectRubber
dc.subjectThermal ageing
dc.subjectFailure prediction
dc.subjectIntrinsic defect
dc.subjectFracture mechanics
dc.titleTime to failure prediction in rubber components subjected to thermal ageing: A combined approach based upon the intrinsic defect concept and the fracture mechanics
ensam.hal.submitrunning
dc.identifier.doi10.1016/j.mechmat.2014.07.015
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Lille
dc.localisationCentre de Paris
dc.subject.halChimie: Polymères
dc.subject.halSciences de l'ingénieur: Génie des procédés
dc.subject.halSciences de l'ingénieur: Matériaux
ensam.audienceInternationale
ensam.page15-24
ensam.journalMechanics of Materials
ensam.volume79
hal.submission.permittedtrue
hal.statusunsent


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record