Show simple item record

dc.contributor.author
 hal.structure.identifier
FRANZ, Gérald
39101 Laboratoire des technologies innovantes - UR UPJV 3899 [LTI]
dc.contributor.authorLORRAIN, Jean-Paul
dc.contributor.authorBEN ZINEB, Tarak
dc.contributor.authorLEMOINE, Xavier
dc.contributor.authorBERVEILLER, Marcel
dc.contributor.author
 hal.structure.identifier
ABED-MERAIM, Farid 
1104 Laboratoire de physique et mécanique des matériaux [LPMM]
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
dc.date.accessioned2014
dc.date.available2014
dc.date.issued2009
dc.date.submitted2014
dc.identifier.issn0749-6419
dc.identifier.urihttp://www.sciencedirect.com/science/article/pii/S074964190800034X
dc.identifier.urihttp://hdl.handle.net/10985/8874
dc.description.abstractIn order to investigate the impact of microstructures and deformation mechanisms on the ductility of materials, the criterion first proposed by Rice is applied to elastic–plastic tangent moduli derived from a large strain micromechanical model combined with a self-consistent scale-transition technique. This approach takes into account several microstructural aspects for polycrystalline aggregates: initial and induced textures, dislocation densities as well as softening mechanisms such that the behavior during complex loading paths can be accurately described. In order to significantly reduce the computing time, a new method drawn from viscoplastic formulations is introduced so that the slip system activity can be efficiently determined. The different aspects of the single crystal hardening (self and latent hardening, dislocation storage and annihilation, mean free path, etc.) are taken into account both by the introduction of dislocation densities per slip system as internal variables and the corresponding evolution equations. Comparisons are made with experimental results for single and dual-phase steels involving linear and complex loading paths. Rice’s criterion is then coupled and applied to this constitutive model in order to determine the ellipticity loss of the polycrystalline tangent modulus. This criterion, which does not need any additional “fitting” parameter, is used to build Ellipticity Limit Diagrams (ELDs).
dc.description.sponsorshipArcelorMittal Research
dc.language.isoen
dc.publisherElsevier
dc.rightsPost-print
dc.subjectScale transition
dc.subjectDuctility
dc.subjectRice's criterion
dc.subjectEllipticity Limit Diagram
dc.subjectPlastic instability
dc.subjectFORMING LIMIT DIAGRAMS
dc.subjectDUCTILE SINGLE-CRYSTALS
dc.subjectSHEET-METAL
dc.subjectLOCALIZED NECKING
dc.subjectCONSTITUTIVE RELATIONS
dc.subjectDISLOCATION DENSITIES
dc.subjectHARDENING BEHAVIOR
dc.subjectNUMERICAL-ANALYSIS
dc.subjectBCC POLYCRYSTALS
dc.subjectMATERIAL DAMAGE
dc.titleEllipticity loss analysis for tangent moduli deduced from a large strain elastic–plastic self-consistent model
dc.identifier.doi10.1016/j.ijplas.2008.02.006
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Metz
dc.subject.halSciences de l'ingénieur: Génie des procédés
dc.subject.halSciences de l'ingénieur: Matériaux
dc.subject.halSciences de l'ingénieur: Mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Génie mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Matériaux et structures en mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des matériaux
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des solides
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des structures
dc.subject.halSciences de l'ingénieur: Micro et nanotechnologies/Microélectronique
ensam.audienceInternationale
ensam.page205–238
ensam.journalInternational Journal of Plasticity
ensam.volume25
ensam.issue2
hal.identifierhal-01081905
hal.version1
hal.statusaccept


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record