Show simple item record

dc.contributor.authorGUERCHAIS, Raphaël
dc.contributor.authorROBERT, Camille
dc.contributor.author
 hal.structure.identifier
MOREL, Franck
206863 Laboratoire des Arts et Métiers ParisTech d'Angers - Procédés Matériaux Durabilité [LAMPA - PMD]
dc.contributor.author
 hal.structure.identifier
SAINTIER, Nicolas
164351 Institut de Mécanique et d'Ingénierie de Bordeaux [I2M]
dc.date.accessioned2014
dc.date.available2014
dc.date.issued2014
dc.date.submitted2014
dc.identifier.issn0142-1123
dc.identifier.urihttp://hdl.handle.net/10985/8937
dc.description.abstractIn this work, an analysis of both the mechanical response at the grain scale and high cycle multiaxial fatigue criteria is undertaken using finite element (FE) simulations of polycrystalline aggregates. The metallic material chosen for investigation, a pure copper, has a Face Centred Cubic (FCC) crystalline structure. Two-dimensional polycrystalline aggregates, which are composed of 300 randomly orientated equiaxed grains, are loaded at the median fatigue strength defined at 107 cycles. In order to analyse the effect of the loading path on the local mechanical response, combined tension–torsion and biaxial tension loading cases, in-phase and out-of-phase, with different biaxiality ratios, are applied to each polycrystalline aggregate. Three different material constitutive models assigned to the grains are investigated: isotropic elasticity, cubic elasticity and crystal plasticity in addition to the cubic elasticity. First, some aspects of the mechanical response of the grains are highlighted, namely the scatter and the multiaxiality of the mesoscopic responses with respect to an uniaxial macroscopic response. Then, the distributions of relevant mechanical quantities classically used in fatigue criteria are analysed for some loading cases and the role of each source of anisotropy on the mechanical response is evaluated and compared to the isotropic elastic case. In particular, the significant influence of the elastic anisotropy on the mesoscopic mechanical response is highlighted. Finally, an analysis of three different fatigue criteria is conducted, using mechanical quantities computed at the grain scale. More precisely, the predictions provided by these criteria, for each constitutive model studied, are compared with the experimental trends observed in metallic materials for such loading conditions.
dc.language.isoen
dc.publisherElsevier
dc.rightsPost-print
dc.subjectMultiaxial high cycle fatigue
dc.subjectMicrostructure modeling
dc.subjectAnisotropic elasticity
dc.subjectCrystal plasticity
dc.subjectFatigue criterion
dc.titleMicromechanical study of the loading path effect in high cycle fatigue
dc.identifier.doi10.1016/j.ijfatigue.2013.09.014
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Angers
dc.localisationCentre de Bordeaux-Talence
dc.subject.halMathématique: Analyse fonctionnelle
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des matériaux
ensam.audienceInternationale
ensam.page64-75
ensam.journalInternational Journal of Fatigue
ensam.volume59
hal.identifierhal-01084146
hal.version1
hal.statusaccept


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record