Show simple item record

dc.contributor.author
 hal.structure.identifier
LAZARUS, Arnaud
12568 Laboratoire de Mécanique des Structures et des Systèmes Couplés [LMSSC]
dc.contributor.author
 hal.structure.identifier
THOMAS, Olivier
12568 Laboratoire de Mécanique des Structures et des Systèmes Couplés [LMSSC]
178374 Laboratoire des Sciences de l'Information et des Systèmes : Ingénierie Numérique des Systèmes Mécaniques [LSIS- INSM]
dc.contributor.author
 hal.structure.identifier
DEÜ, Jean-François
12568 Laboratoire de Mécanique des Structures et des Systèmes Couplés [LMSSC]
dc.date.accessioned2014
dc.date.available2014
dc.date.issued2012
dc.date.submitted2014
dc.identifier.issn0168-874X
dc.identifier.urihttp://hdl.handle.net/10985/8955
dc.description.abstractThis article presents a finite element reduced order model for the nonlinear vibrations of piezoelectric layered beams with application to NEMS. In this model, the geometrical nonlinearities are taken into account through a von Kármán nonlinear strain–displacement relationship. The originality of the finite element electromechanical formulation is that the system electrical state is fully described by only a couple of variables per piezoelectric patches, namely the electric charge contained in the electrodes and the voltage between the electrodes. Due to the geometrical nonlinearity, the piezoelectric actuation introduces an original parametric excitation term in the equilibrium equation. The reduced-order formulation of the discretized problem is obtained by expanding the mechanical displacement unknown vector onto the short-circuit eigenmode basis. A particular attention is paid to the computation of the unknown nonlinear stiffness coefficients of the reduced-order model. Due to the particular form of the von Kármán nonlinearities, these coefficients are computed exactly, once for a given geometry, by prescribing relevant nodal displacements in nonlinear static solutions settings. Finally, the low-order model is computed with an original purely harmonic-based continuation method. Our numerical tool is then validated by computing the nonlinear vibrations of a mechanically excited homogeneous beam supported at both ends referenced in the literature. The more difficult case of the nonlinear oscillations of a layered nanobridge piezoelectrically actuated is also studied. Interesting vibratory phenomena such as parametric amplification or patch length dependence of the frequency output response are highlighted in order to help in the design of these nanodevices.
dc.description.sponsorshipThis research is part of the NEMSPIEZO project, under funds from the French National Research Agency (Project ANR-08-NAN O-015-04), for which the authors are grateful.
dc.language.isoen
dc.publisherElsevier
dc.rightsPost-print
dc.subjectContinuation methods
dc.subjectNanoelectromechanical systems
dc.subjectNonlinear vibrations
dc.subjectPiezoelectric materials
dc.subjectReduced order models
dc.titleFinite element reduced order models for nonlinear vibrations of piezoelectric layered beams with applications to NEMS
dc.identifier.doi10.1016/j.finel.2011.08.019
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Lille
dc.subject.halPhysique: Instrumentations et Détecteurs
dc.subject.halSciences de l'ingénieur: Mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Matériaux et structures en mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des solides
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des structures
dc.subject.halSciences de l'ingénieur: Mécanique: Vibrations
dc.subject.halSciences de l'ingénieur: Micro et nanotechnologies/Microélectronique
ensam.audienceInternationale
ensam.page35-51
ensam.journalFinite Elements in Analysis and Design
ensam.volume49
ensam.issue1
hal.identifierhal-01084700
hal.version1
hal.submission.permittedupdateMetadata
hal.statusaccept


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record