Show simple item record

dc.contributor.author
 hal.structure.identifier
AKCABAY, Deniz Tolga
24332 University of Michigan [Ann Arbor]
dc.contributor.author
 hal.structure.identifier
CHAE, Eun Jung
24332 University of Michigan [Ann Arbor]
dc.contributor.author
 hal.structure.identifier
YOUNG, Yin Lu
24332 University of Michigan [Ann Arbor]
dc.contributor.author
 hal.structure.identifier
DUCOIN, Antoine
111023 École Centrale de Nantes [ECN]
24332 University of Michigan [Ann Arbor]
dc.contributor.author
 hal.structure.identifier
ASTOLFI, Jacques Andre
13094 Institut de Recherche de l'Ecole Navale [IRENAV]
dc.date.accessioned2014
dc.date.available2014
dc.date.issued2014
dc.date.submitted2014
dc.identifier.issn0889-9746
dc.identifier.urihttp://hdl.handle.net/10985/8992
dc.description.abstractThe objective of this work is to investigate the influence of cavity-induced vibrations on the dynamic response and stability of a NACA66 hydrofoil at 8° angle of attack at Re=750 000 via combined experimental measurements and numerical simulations. The rectangular, cantilevered hydrofoil is assumed to be rigid in the chordwise direction, while the spanwise bending and twisting deformations are represented using a two-degrees-of-freedom structural model. The multiphase flow is modeled with an incompressible, unsteady Reynolds Averaged Navier–Stokes solver with the k–ω Shear Stress Transport (SST) turbulence closure model, while the phase evolutions are modeled with a mass-transport equation based cavitation model. The numerical predictions are compared with experimental measurements across a range of cavitation numbers for a rigid and a flexible hydrofoil with the same undeformed geometries. The results showed that foil flexibility can lead to: (1) focusing – locking – of the frequency content of the vibrations to the nearest sub-harmonics of the foil׳s wetted natural frequencies, and (2) broadening of the frequency content of the vibrations in the unstable cavitation regime, where amplifications are observed in the sub-harmonics of the foil natural frequencies. Cavitation was also observed to cause frequency modulation, as the fluid density, and hence fluid induced (inertial, damping, and disturbing) forces fluctuated with unsteady cavitation.
dc.description.sponsorshipThe authors gratefully acknowledge Ms. Kelly Cooper (program manager) and the Office of Naval Research (ONR), for their financial support through Grant nos. N00014-11-1-0833 and N0014-12-C-0585, as well as ONR Global and Dr. Woei-Min Lin (program manager) through grant no. N62909-12-1-7076.
dc.language.isoen
dc.publisherElsevier
dc.rightsPost-print
dc.subjectCavitation
dc.subjectFlexible
dc.subjectFrequency modulation
dc.subjectHydrofoil
dc.subjectLock-in
dc.subjectVibration
dc.titleCavity induced vibration of flexible hydrofoils
dc.identifier.doi10.1016/j.jfluidstructs.2014.05.007
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Paris
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des fluides
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des structures
ensam.audienceInternationale
ensam.page463–484
ensam.journalJournal of Fluids and Structures
ensam.volume49
ensam.languagefr
hal.identifierhal-01087334
hal.version1
hal.submission.permittedupdateMetadata
hal.statusaccept
dc.identifier.eissn1095-8622


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record