Show simple item record

dc.contributor.author
 hal.structure.identifier
HFAIEDH, Neila
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
dc.contributor.author
 hal.structure.identifier
PEYRE, Patrice
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
dc.contributor.author
 hal.structure.identifier
SONG, Hongbin
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
dc.contributor.author
 hal.structure.identifier
POPA, Ioana
103192 Laboratoire Interdisciplinaire Carnot de Bourgogne [ICB]
dc.contributor.author
 hal.structure.identifier
JI, Vincent
33665 Institut de Chimie Moléculaire et des Matériaux d'Orsay [ICMMO]
dc.contributor.authorVIGNAL, Vincent
dc.date.accessioned2014
dc.date.available2017
dc.date.issued2015
dc.date.submitted2014
dc.identifier.issn0142-1123
dc.identifier.urihttp://hdl.handle.net/10985/9065
dc.description.abstractLaser shock processing is a recently developed surface treatment designed to improve the mechanical properties and fatigue performance of materials, by inducing a deep compressive residual stress field. The purpose of this work is to investigate the residual stress distribution induced by laser shock processing in a 2050-T8 aeronautical aluminium alloy with both X-ray diffraction measurements and 3D finite element simulation. The method of X-ray diffraction is extensively used to characterize the crystallographic texture and the residual stress crystalline materials at different scales (macroscopic, mesoscopic and microscopic). Shock loading and materials’ dynamic response are experimentally analysed using Doppler velocimetry in order to use adequate data for the simulation. Then systematic experience versus simulation comparisons are addressed, considering first a single impact loading, and in a second step the laser shock processing treatment of an extended area, with a specific focus on impact overlap. Experimental and numerical results indicate a residual stress anisotropy, and a better surface stress homogeneity with an increase of impact overlap. A correct agreement is globally shown between experimental and simulated residual stress values, even if simulations provide us with local stress values whereas X-ray diffraction determinations give averaged residual stresses.
dc.language.isoen
dc.publisherElsevier
dc.rightsPost-print
dc.subjectLaser shock peening
dc.subjectResidual stress
dc.subjectFinite element analysis
dc.titleFinite element analysis of laser shock peening of 2050-T8 aluminum alloy
ensam.embargo.terms2017-02-01
dc.identifier.doi10.1016/j.ijfatigue.2014.05.015
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Paris
dc.subject.halSciences de l'ingénieur: Matériaux
dc.subject.halSciences de l'ingénieur: Mécanique
ensam.audienceInternationale
ensam.page480–489
ensam.journalInternational Journal of Fatigue
ensam.volume70
hal.identifierhal-01091371
hal.version1
hal.submission.permittedupdateFiles
hal.statusaccept


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record