Show simple item record

dc.contributor.author
 hal.structure.identifier
ROBERT, Camille
206863 Laboratoire des Arts et Métiers ParisTech d'Angers - Procédés Matériaux Durabilité [LAMPA - PMD]
dc.contributor.author
 hal.structure.identifier
MAREAU, Charles
206863 Laboratoire des Arts et Métiers ParisTech d'Angers - Procédés Matériaux Durabilité [LAMPA - PMD]
dc.date.accessioned2015
dc.date.available2016
dc.date.issued2015
dc.date.submitted2015
dc.identifier.issn0927-0256
dc.identifier.urihttp://hdl.handle.net/10985/9493
dc.description.abstractThe macroscopic behavior of polycrystalline materials is largely influenced by the shape, the arrangement and the orientation of crystallites. Different methods have thus been developed to determine the effective behavior of such materials as a function of their microstructural features. In this work, which focuses on polycrystalline materials with an elastic-viscoplastic behavior, the self-consistent, finite element and spectral methods are compared. These common methods are used to determine the effective behavior of \textit{different 316L polycrystalline aggregates} subjected to various loading conditions. Though no major difference is observed at the macroscopic scale, the hardening rate is found to be slightly overestimated with the finite element method. Indeed, spatial convergence cannot be guaranteed for finite element calculations, even when fine mesh resolutions, for which the computational cost is important, are used. Also, as the self-consistent method does not explicitly account for neighborhood effects, important discrepancies between the self-consistent method and the other methods exist regarding the mechanical response of a specific grain. The self-consistent method nevertheless provides a reasonable description of the average response obtained for a group of grains with identical features (e.g. shape, orientation).
dc.language.isoen
dc.publisherElsevier
dc.rightsPost-print
dc.subjectHomogenization
dc.subjectElasto-viscoplasticity
dc.subjectSelf-consistent method
dc.subjectFinite element method
dc.subjectSpectral method
dc.subjectHeterogeneous materials
dc.titleA comparison between different numerical methods for the modeling of polycrystalline materials with an elastic-viscoplastic behavior
ensam.embargo.terms1 Year
dc.identifier.doi10.1016/j.commatsci.2015.03.028
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Angers
dc.subject.halSciences de l'ingénieur: Matériaux
dc.subject.halSciences de l'ingénieur: Mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des matériaux
ensam.audienceNon spécifiée
ensam.page134-144
ensam.journalComputational Materials Science
ensam.volume103
hal.submission.permittedtrue
hal.statusunsent


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record