Show simple item record

dc.contributor.author
 hal.structure.identifier
SCHMITTBUHL, Jean
1848 Ecole et Observatoire des sciences de la terre [EOST]
dc.contributor.author
 hal.structure.identifier
NOEL, Olivier
203902 Institut des Molécules et Matériaux du Mans [IMMM]
dc.contributor.authorFOND, Christophe
dc.contributor.author
 hal.structure.identifier
KOPP, Jean-Benoit
164351 Institut de Mécanique et d'Ingénierie de Bordeaux [I2M]
dc.date.accessioned2015
dc.date.available2016
dc.date.issued2015
dc.date.submitted2015
dc.identifier.issn0376-9429
dc.identifier.urihttp://hdl.handle.net/10985/9600
dc.description.abstractProfilometric imaging of fracture surfaces of rubber toughened polymer has been performed at two different resolutions (a) at large scales [10 μ\upmu m–25 mm] using an opto-mechanical profilometer and (b) at small scales [0.195 μ\upmu m–0.48 mm] using an interferometric optical microscope. We introduced a self-affine geometrical model using two parameters: the Hurst exponent and the topothesy. We showed that for rubber toughened materials the approximation of the created surface by a mean flat plane leads to a poor estimation of the dynamic fracture energy GIdcG_{Idc}. The description of the created rough fracture surface by a self-affine model is shown to provide a significantly better approximation. A new and original geometrical method is introduced to estimate self-affine parameters: the 3D surface scaling method. Hurst exponents are shown to be unique, χ=0.6±0.1\chi =0.6\pm 0.1 for the different fracture zones and measurement scales. Topothesy ratios indicate a significant difference of fracture surface roughness amplitude depending on the observation resolution when the detrending technique is not correctly introduced.
dc.description.sponsorshipANR Carenco
dc.language.isoen
dc.publisherSpringer Verlag
dc.rightsPost-print
dc.subjectDynamic fracture
dc.subjectPolymers
dc.subjectSurface roughness
dc.subjectSelf-affinity
dc.subjectHurst exponent
dc.subjectTopothesy
dc.subjectFracture energy
dc.subjectRapid crack propagation
dc.titleA self-affine geometrical model of dynamic RT-PMMA fractures: implications for fracture energy measurements
ensam.embargo.terms1 Year
dc.identifier.doi10.1007/s10704-015-0025-2
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Bordeaux-Talence
dc.subject.halPhysique: matière Condensée: Science des matériaux
dc.subject.halSciences de l'ingénieur: Matériaux
dc.subject.halSciences de l'ingénieur: Mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des matériaux
ensam.audienceInternationale
ensam.page141-152
ensam.journalInternational Journal of Fracture
ensam.volume193
ensam.issue2
hal.identifierhal-01165645
hal.version1
hal.statusaccept
dc.identifier.eissn1573-2673


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record