Show simple item record

dc.contributor.author
 hal.structure.identifier
RABAHALLAH, Meziane
239210 Laboratoire des Propriétés Mécaniques et Thermodynamiques des Matériaux [LPMTM]
dc.contributor.author
 hal.structure.identifier
BOUVIER, Salima
239210 Laboratoire des Propriétés Mécaniques et Thermodynamiques des Matériaux [LPMTM]
dc.contributor.author
 hal.structure.identifier
TEODOSIU, Cristian
239210 Laboratoire des Propriétés Mécaniques et Thermodynamiques des Matériaux [LPMTM]
dc.contributor.author
 hal.structure.identifier
BALAN, Tudor
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
dc.date.accessioned2015
dc.date.available2015
dc.date.issued2009
dc.date.submitted2015
dc.identifier.issn0029-5981
dc.identifier.urihttp://hdl.handle.net/10985/9908
dc.description.abstractModelling of plastic anisotropy requires the definition of stress potentials (coinciding with the yield criteria in case of the associated flow rules) or, alternatively, plastic strain-rate potentials. The latter approach has several advantages whenever material parameters are determined by means of texture measurements and crystal plasticity simulations. This paper deals with a phenomenological description of anisotropy in elastoplastic rate-insensitive models, by using strain-rate potentials. A fully implicit time integration algorithm is developed in this framework and implemented in a static-implicit finite element code. Algorithmic details are discussed, including the derivation of the consistent (algorithmic) tangent modulus and the numerical treatment of the yield condition. Typical sheet-forming applications are simulated with the proposed implementation, using the recent non-quadratic strain-rate potential Srp2004-18p. Numerical simulations are carried out for materials that exhibit strong plastic anisotropy. The numerical results confirm that the presented algorithm exhibits the same generality, robustness, accuracy, and time-efficiency as state-of-the-art yield-criterion-based algorithms.
dc.description.sponsorshipFinancement Région Lorraine
dc.language.isoen
dc.publisherWiley
dc.rightsPost-print
dc.subjectstress update algorithm
dc.subjectbackward Euler
dc.subjectplastic strain-rate potential
dc.subjectelastoplasticity
dc.subjectsheet metal forming simulation
dc.titleTime integration scheme for elastoplastic models based on anisotropic strain-rate potentials
dc.identifier.doi10.1002/nme.2640
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Metz
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des matériaux
ensam.audienceInternationale
ensam.page381–402
ensam.journalInternational Journal for Numerical Methods in Engineering
ensam.volume80
ensam.issue3
hal.identifierhal-01192771
hal.version1
hal.statusaccept
dc.identifier.eissn1097-0207


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record