Afficher la notice abrégée

dc.contributor.authorMONTEMURRO, Marco
dc.date.accessioned2015
dc.date.available2017
dc.date.issued2015
dc.date.submitted2015
dc.identifier.issn0263-8223
dc.identifier.urihttp://hdl.handle.net/10985/9924
dc.description.abstractIn this paper the Verchery's polar method is extended to the conceptual framework of the First-order Shear Deformation Theory (FSDT) of laminates. It will be proved that the number of independent tensor invariants characterising the laminate constitutive behaviour remains unchanged when passing from the context of the Classical Laminate Theory (CLT) to that of the FSDT. Moreover, it will also be shown that, depending on the considered formulation, the elastic symmetries of the laminate shear stiffness matrix depend upon those of membrane and bending stiffness matrices. As a consequence of these results a unified formulation for the problem of designing the laminate elastic symmetries in the context of the FSDT is proposed. The optimum solutions are found within the framework of the polar-genetic approach, since the objective function is written in terms of the laminate polar parameters, while a genetic algorithm is used as a numerical tool for the solution search. In order to support the theoretical results, and also to prove the effectiveness of the proposed approach, some novel and meaningful numerical examples are discussed in the paper.
dc.language.isoen
dc.publisherElsevier
dc.rightsPre-print
dc.subjectAnisotropy
dc.subjectPolar method
dc.subjectGenetic algorithms
dc.subjectComposite materials
dc.subjectStructural design
dc.titleAn extension of the polar method to the First-order Shear Deformation Theory of laminates
ensam.embargo.terms2 Years
dc.identifier.doi10.1016/j.compstruct.2015.03.025
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Bordeaux-Talence
dc.subject.halMathématique: Analyse numérique
dc.subject.halMathématique: Optimisation et contrôle
dc.subject.halMathématique: Variables complexes
dc.subject.halInformatique: Analyse numérique
dc.subject.halInformatique: Modélisation et simulation
dc.subject.halSciences de l'ingénieur: Matériaux
dc.subject.halSciences de l'ingénieur: Mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Génie mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Matériaux et structures en mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des solides
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des structures
ensam.audienceInternationale
ensam.page328-339
ensam.journalComposite Structures
ensam.volume127
hal.statusunsent


Fichier(s) constituant cette publication

Thumbnail

Cette publication figure dans le(les) laboratoire(s) suivant(s)

Afficher la notice abrégée