Show simple item record

dc.contributor.authorCHATZIATHANASIOU, Dimitris
dc.contributor.authorCHEMISKY, Yves
dc.contributor.authorCHATZIGEORGIOU, George
dc.contributor.authorPATOOR, Etienne
dc.contributor.author
 hal.structure.identifier
MERAGHNI, Fodil
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
dc.date.accessioned2015
dc.date.available2016
dc.date.issued2015
dc.date.submitted2015
dc.identifier.issn2199-384X
dc.identifier.urihttp://hdl.handle.net/10985/9970
dc.description.abstractIn the present study, a new transformation criterion that includes the effect of tension–compression asymmetry and texture-induced anisotropy is proposed and combined with a thermodynamical model to describe the thermomechanical behavior of polycrystalline shape memory alloys. An altered Prager criterion has been developed, introducing a general transformation of the axes in the stress space. A convexity analysis of such criterion is included along with an identification strategy aimed at extracting the model parameters related to tension–compression asymmetry and anisotropy. These are identified from a numerical simulation of an SMA polycrystal, using a self-consistent micromechanical model previously developed by Patoor et al. (J Phys IV 6(C1):277–292, 1996) for several loading cases on isotropic, rolled, and drawn textures. Transformation surfaces in the stress and transformation strain spaces are obtained and compared with those predicted by the micromechanical model. The good agreement obtained between the macroscopic and the microscopic polycrystalline simulations states that the proposed criterion and transformation strain evolution equation can capture phenomenologically the effects of texture on anisotropy and asymmetry in SMAs.
dc.language.isoen
dc.publisherSpringer
dc.rightsPost-print
dc.subjectShape memory alloys
dc.subjectSuperelasticity
dc.subjectAnisotropy
dc.subjectTension–compression asymmetry
dc.subjectTransformation criteria
dc.subjectEvolution equation
dc.titlePhase Transformation of Anisotropic Shape Memory Alloys: Theory and Validation in Superelasticity
ensam.embargo.terms2016-08
dc.identifier.doi10.1007/s40830-015-0027-y
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Metz
dc.subject.halSciences de l'ingénieur: Matériaux
dc.subject.halSciences de l'ingénieur: Mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Matériaux et structures en mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des matériaux
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des solides
ensam.audienceInternationale
ensam.page1-16
ensam.journalShape Memory and Superelasticity
ensam.volumeAugust
hal.identifierhal-01196348
hal.version1
hal.submission.permittedupdateMetadata
hal.statusaccept


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record