Show simple item record

dc.contributor.author
 hal.structure.identifier
CHALAL, Hocine
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
dc.contributor.authorABED-MERAIM, Farid 
dc.date.accessioned2015
dc.date.available2017
dc.date.issued2015
dc.date.submitted2015
dc.identifier.issn0167-6636
dc.identifier.urihttp://hdl.handle.net/10985/9972
dc.description.abstractThe localization of deformation into planar bands is often considered as the ultimate stage of strain prior to ductile fracture. In this study, ductility limits of metallic materials are predicted using the Gurson–Tvergaard–Needleman (GTN) damage model combined with the bifurcation approach. Both the GTN constitutive equations and the Rice bifurcation criterion are implemented into the finite element (FE) code ABAQUS/Standard within the framework of large plastic strains and a fully three-dimensional formulation. The current contribution focuses on the effect of strain hardening on ductility limit predictions. It is shown that the choice of void nucleation mechanism has an important influence on the sensitivity of the predicted ductility limits to strain hardening. When strain-controlled nucleation is considered, varying the hardening parameters of the fully dense matrix material has no effect on the porosity evolution and, consequently, very small impact on the predicted ductility limits. For stress-controlled nucleation, the porosity evolution is directly affected by the strain hardening characteristics, which induce a significant effect on the predicted ductility limits. This paper also discusses the use of a micromechanics-based calibration for the GTN q -parameters in the case of strain-controlled nucleation, which is also shown to allow accounting for the hardening effects on plastic strain localization.
dc.language.isoen
dc.publisherElsevier
dc.rightsPost-print
dc.subjectGTN model
dc.subjectDuctile damage
dc.subjectBifurcation criterion
dc.subjectDuctility limits
dc.subjectHardening effects
dc.titleHardening effects on strain localization predictions in porous ductile materials using the bifurcation approach
ensam.embargo.terms2 Years
dc.identifier.doi10.1016/j.mechmat.2015.07.012
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Metz
dc.subject.halSciences de l'ingénieur: Mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Génie mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Matériaux et structures en mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des matériaux
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des solides
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des structures
ensam.audienceInternationale
ensam.page152-166
ensam.journalMechanics of Materials
ensam.volume91
ensam.issuePart1
hal.identifierhal-01196421
hal.version1
hal.submission.permittedupdateMetadata
hal.statusaccept


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record