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a b s t r a c t

The ascending branch of the aorta is one of the most stressed organ of the arterial system.
We aim to design a biomechanical model for analysing the aorta dynamics under a shock.
The model includes the aorta layers and the influence of the blood pressure. We undertake
a three-dimensional modal analysis of the coupled aorta–blood system. We determine in
the present work the coupled natural frequencies and the modes shapes of the system of
the aorta and blood. Three models are presented in this study: three-layers model, two-
layers model and one layer model. For the analytical solving a potential technique is used
to obtain a general solution for an aorta domain. The finite element model is then validated
by these original analytical solutions. The results from the proposed method are in
good agreement with numerical solutions.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Traumatic rupture of the thoracic aorta is commonly known as a fatal injury. The investigation and treatment of Blunt
Traumatic Aortic Rupture (BTAR) or Blunt Traumatic Aortic Injury (BTAI) are nowadays well described. However, some
uncertainty remains with regards of the pathogenic aetiology of BTAI. The injury and consequently the rupture are thought
to be the result of both anatomic and mechanical factors. Initially, investigators proposed that BTAR was due to sudden
increasing of arterial blood pressure. Later, recent theories suggest that injury or rupture result from a complex combination
of mechanical stresses and is thus highly multi-parametric. Numerous factors are involved in the injury process but it
remains uncertain to what extent, if any, each of them plays a part and under what circumstances. Of course, every mechan-
ical force acting on the aorta may be important in the injury process (Zhao, Field, Diggers, & Richens, 2008). However, the
relative importance of these forces still remains unclear and several different forces and hypotheses have been proposed over
the years. It was thought that the injury was caused by a sudden stretching of the aorta. However, this mode of failure was
probably not the only one since a cylindrical vessel under pressure would rupture axially rather than transversely. Then,
some others attributed the occurrence of injury to a sudden increasing of blood pressure or also to the occurring of a
water-hammer effect, which leads to high-pressure waves being reflected back along the vessel wall (Forman, Stacey,
Evans, & Kent, 2008). Nevertheless, the water-hammer model is unable to consider the additional deformation of the
aorta during an impact where increasing the curvature of the aorta could possibly lead to greater increases in the pressure
wave in this region (Prosi, Perktold, Ding, & Friedman, 2004). More recent theories propose that aorta injury results from a
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combination of mechanisms including shear, torsion and stretching (Zhao et al., 2008). These loadings are coupled with the
blood pressure and propagation of wave within the aorta. To this end, it seems necessary to include the blood and the vessel
undergoing deformation and interacting with the blood flow (Moore et al., 2008). In sum, there are still no definitive answers
as to what the fundamental mechanisms are that cause this injury, though a great deal of speculation exists on what these
might be. However, the high level of reproducibility of the site and nature of blunt traumatic rupture intuitively suggests that
there is a reproducible mechanism of injury.

The largest artery in the body is the aorta. The highest fluid pressure in the body is the systolic pressure of the blood as it
exits the heart into the large arterial system. The minimum pressure of this same blood is the diastolic pressure of the end of
the heart’s pumping cycle. The blood pressure in various parts of the body is also affected by accelerations of the body. The
biomechanics within the ascending aorta characterizes the pressure and flow for the entire vascular system (see Fig. 1). One
of the most stressed parts of the entire vascular system is the ascending branch of the aorta. Indeed, this branch is the first
part of the system receiving the blood from the heart at the opening of the aortic valve, during the systolic phase. The study
and the understanding of the dynamics of this branch is rather complicated due to the coupling effects and due to the het-
erogeneity of the organ radially.

The goal of this paper is to analyse the influence of the blood–aorta interaction on the coupled natural frequencies. Ana-
lytical method, based on the modal decomposition, and numerical method, based on the finite element method. We deal
with modal analysis of the aorta with and without fluid (blood). For that purpose, analytical solutions of the coupled problem
are obtained conversely to previous results (Zhang, 2002; Zhang, Liu, & Lam, 2001). Then the sensitivity of these natural fre-
quencies and modal shapes is investigated with regards of the layers distribution. Wall properties are those used by Gao,
Guo, Sakamoto, and Matsuzawa (2006). Solving the equation is based on the Helmholtz decomposition (Morse &
Feshbach, 1946) of the wall displacement. This allows us to write the overall equation in terms of potentials. We assume
an inertial coupling meaning that the longitudinal wave celerity is greater than any characteristic velocity of the blood flow.
The blood is assumed compressible. One layer case, two layers case and three layers case are compared. Numerical solutions
are compared with analytical results for assessing the reliability of the FEM software.

Fig. 1. Ascending aorta and its multi-layers cross sectional model: blood Xf , intima X1, media X2, adventitia X3. (b) Three-layers model, (c) two-layers
model and (d) one-layer model.
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2. Frequency analysis of aorta

This paper tries to focuses in the study of the modal analysis of an idealized arterial wall. This step is needed before treat-
ing the dynamic response of the system. Modal analysis consists in linearizing the governing equations of nonlinear elasticity
around an equilibrium position. In general the duration of a shock is very low and during the shock, the arterial wall under-
goes a moderate deformation. In this case, the linear model seems to be more suitable. The domain occupied by the fluid is
not confined, i.e. R=th > 1 (th and R are the thickness and the inner radius of the arterial wall, respectively), and U0=cL � 1
(U0: characteristic velocity of the fluid; cL: the compressional wave velocity in the solid), the fluid can be described by an
inertial model where we can neglect the viscosity and the convective terms in the Navier–Stokes equations.

2.1. Structure of the arterial wall

The aorta is composed of three morphologically distinct layers: the intima, media, and adventitia, separated by internal
and external elastic laminae. Adventitia is the outer layer of a blood vessel (Holzapfel, 2006). It is made up of connective
tissue and is thicker in arteries than veins. This layer is known to give the arteries its longitudinal elasticity (e.g.,
Holzapfel, 2006). Media is the middle layer of a blood vessel. It is made up of smooth muscle tissue and some elastic fibers.
It is much thicker in arteries than in veins. This layer is known to give the arteries its radial elasticity (e.g., Holzapfel & Gasser,
2007). Intima is the inner layer or lining of a blood vessel. It is made up of a single layer of endothelial cells with an under-
lining basement membrane, a connective tissue layer, and an elastic internal membrane.

Recent progress in biomedical imaging (e.g., Ou et al., 2005) allows us to extract very accurate data to reconstruct indi-
vidualized 3D geometry of the artery and to obtain their kinematics and motion. Nevertheless, it is often necessary to analyse
the sensitivity of the results with regards of the relative thickness of each layer and their relative stiffness. This is particularly
true for investigating the dynamics of the aorta vs. the different layers. The goal of this work is to analyse the dynamic and
wave motion of an aortic wall containing blood in flow by assuming acoustic situation for the blood. Three layers of the aorta
are accounted for (e.g., Gao et al., 2006). We consider here the systolic phase where the motion is essentially radial. For most
of examples treated in the present work, we use analytical method for solving the eigenvalue problems based on the Helm-
holtz decomposition since we consider domains with or without holes (e.g., Morse & Feshbach, 1946; Tsai, Young, Chen, &
Fan, 2006). We solve the modal characteristics of the coupled system by assuming that stiffness of soft tissues surrounding
the aorta does not influence the results. It means that the external wall is free of contact loadings. One-layer model, two-
layers model and three-layers model are compared in this section.

2.2. Mathematical formulation

2.2.1. One-layer, two-layers and three-layers models of aorta
The three-layers model includes all layers although keeping in mind that biomedical imaging sometimes does not allow

to distinguish them accurately. Geometry and regions are displayed on the figure (Fig. 2). Mechanical properties of the one-
layer model and two-layers model are calculated from Gao et al. (2006). The arterial layers ðXiÞ are assumed to be made of an
elastic solids where i ¼ 1;2;3 indicates the intima ði ¼ 1Þ, media ði ¼ 2Þ and the adventicia ði ¼ 3Þ, respectively. In fact for
future studies, we plan to study the dynamic response of the arterial wall during a very short impact Dt � 1 s. This motivates

Fig. 2. The finite element mesh for arterial wall: (a) with and (b) without fluid.
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the use of linear model. Indeed, for a very short impact, it is appropriate to use a linear behavior of the arterial wall. The
vector of the displacement uðiÞ of particles in an isotropic elastic material satisfies the Navier–Cauchy equations:

qi
@2uðiÞ r; h; z; tð Þ

@t2 ¼ lir2uðiÞ r; h; z; tð Þ þ ki þ li

� �
rr � uðiÞ r; h; z; tð Þ ð1Þ

where qi is the density, ki; li are the Lamé constants, r is the radial direction, h is the circumferential direction, z is the axial

direction, t is time, and uðiÞ ¼ uðiÞr ;u
ðiÞ
h ;u

ðiÞ
z

n oT
is the vector displacement along these directions.

The obtained equations of motion are highly complex and coupled. However, a simpler set of equations can be obtained
by introducing scalar potentials /i; wi and vi, known as the Helmholtz decomposition, such that

uðiÞ ¼ r/i þr� wiezð Þ þ r�r� viez
� �

ð2Þ

Substituting Eq. (2) into Eq. (1) leads to three sets of partial differential equations

r2/i ¼
1
c2

Li

@2/i

@t2 ; r2wi ¼
1

c2
Ti

@2wi

@t2 ; r2vi ¼
1

c2
Ti

@2vi

@t2 ð3Þ

where r2 ¼ @2

@r2 þ 1
r
@
@r þ 1

r2
@2

@h2 þ @2

@z2, time dependence has the form exp jxtð Þ and cLi
¼

ffiffiffiffiffiffiffiffiffiffi
kiþ2li

qi

q
and cTi

¼
ffiffiffiffi
li
qi

q
are the compres-

sional and shear wave velocities in the solids, respectively. Applying the method of separation of variables, the solution
of the equations for potentials, associated with an axial wave number kz, radial wave number k/i

; kwi

� �
and circumferential

mode parameter n, after considerable algebraic manipulations, can be shown to be

/i ¼ AiJn k/i
r

� �
þ BiYn k/i

r
� �� �

cos nhð Þ sin kzzð Þ exp jxtð Þ ð4Þ
wi ¼ CiJn kwi

r
� �

þ DiYn kwi
r

� �� �
sin nhð Þ sin kzzð Þ exp jxtð Þ ð5Þ

vi ¼ EiJn kwi
r

� �
þ FiYn kwi

r
� �� �

cos nhð Þ cos kzzð Þ exp jxtð Þ ð6Þ

j ¼
ffiffiffiffiffiffiffi
�1
p

; kz ¼ mp=l; l is length of the tube, n and m are the azimuthal and axial wavenumbers. n ¼ 0;1;2; . . ., whereas kz is
found by satisfying the symmetry boundary condition on the z ¼ 0 and z ¼ l. Note that the displacement field uðiÞ has com-
ponents that are symmetric or antisymmetric in h and z. Following standard practice, the solutions with symmetric (anti-
symmetric) axial velocities are called the antisymmetric (symmetric) axial modes, respectively, with ka

z and ks
z denoting

the corresponding eigenvalues. Thus, we have ka
z ¼ m� 1ð Þp=l and ks

z ¼ mp=l (m ¼ 0;1;2; . . .). However, the azimuthal
modes corresponding to cos nhð Þ and sin nhð Þ are really the same, due to periodicity in the azimuthal direction, i.e. there
is no distinction in the values of n for the two families.

The radial wave number k/i
; kwi

� �
are related to the axial wave number kz by k2

/i
¼ x2=c2

Li
� k2

z ; k2
wi
¼ x2=c2

Ti
� k2

z . x
denotes the angular frequency. Jn and Yn are Bessel functions of the first and second kind of order n. Ai; Bi; Ci; Di; Ei and
Fi are unknown coefficients which will be determined later by imposing the appropriate boundary conditions.

Using Eq. (2) the scalar components of the displacement vector uðiÞ in cylindrical coordinates can be expressed by

uðiÞr ¼
@/i

@r
þ n

r
wi � kz

@vi

@r
ð7Þ

uðiÞh ¼
nkz

r
vi �

n
r
/i �

@wi

@r
ð8Þ

uðiÞz ¼ kz/i þ k2
wi
vi ð9Þ

The stress tensor in the arterial layers r uðiÞ
� �

is given by Hooke’s law in terms of potentials as

rðiÞrr ¼ 2li
@2/i

@r2 �
kix2

2lic
2
Li

/i þ
n
r2 r

@wi

@r
� wi

� �
� kz

@2vi

@r2

( )
ð10Þ

rðiÞrh ¼ 2li
n
r2 /i � r

@/i

@r

� �
� @

2wi

@r2 �
k2

wi

2
wi þ

nkz

r2 r
@vi

@r
� vi

� �( )
ð11Þ

rðiÞrz ¼ li 2kz
@/i

@r
þ nkz

r
wi þ k2

wi
� k2

z

	 
 @vi

@r

� �
ð12Þ

2.2.2. Fluid domain
In fluid–structure interaction problem, where the fluid medium is not confined (the volume occupied by the fluid is

greater than the volume occupied by the solid), and when the ratio U0=cL � 1, the fluid can be described by a model without
viscosity. This is the basic model in fluid–structure interaction model and is called inertial coupling (Axisa & Antunes, 2007).
In this case the fluid (blood) is assumed non-viscous and isotropic which satisfies the acoustic wave equation. The equation
of motion can be written as

r2p� 1
c2

f

@2p
@t2 ¼ 0 ð13Þ
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where p is the acoustic pressure and cf is the speed of sound in a fluid medium. For a steady-state response in harmonic
motion, the acoustic pressure becomes pðr; h; z; tÞ ¼ pðr; h; zÞe�jxt . We substitute these expression in Eq. (13) we obtain the
solution in cylindrical coordinates

p r; h; zð Þ ¼ GJn kpr
� �

cos nhð Þ sin kzzð Þ ð14Þ

where p r; h; zð Þ is the spatial acoustic pressure function, k2
p ¼ x2=c2

f � k2
z is the radial wave number and G is unknown con-

stant to be determined by the boundary conditions. For incompressible fluid (cf !1), the basic governing equation is

r2p ¼ 0 ð15Þ

and the corresponding acoustic pressure can be obtained by simplifying Eq. (14)

p r; h; zð Þ ¼ GIn kzrð Þ cos nhð Þ sin kzzð Þ ð16Þ

where In is modified Bessel functions of the first kind of order n.

2.3. Fluid–structure interaction

First we define C (r ¼ R), as the boundary contact between the fluid (blood) region and the intima region, C1 (r ¼ R1), as
the boundary contact between the intima region and the media region, C2 (r ¼ R2), as the boundary contact between the
media region and the adventitia region, and C3 (r ¼ R3), as the outer boundary (the outer interface of the adventitia). The
relevant boundary conditions that are physically realistic and mathematically consistent for this problem at the inner and
outer surfaces of the elastic solid (arterial wall) in contact with fluid medium (blood) can be taken as follows:

� Continuity of fluid (blood) accelerations and the normal components of the intima accelerations:

@p r; h; zð Þ
@r

¼ qf x
2uð1Þr r; h; zð Þ ð17Þ

� Continuity of fluid (blood) pressures and the normal components of the intima stresses:

rð1Þ � n ¼ �pn ð18Þ

� Between the intima and the media, the displacements and normal stresses must be continuous, leading to:

uð1Þ ¼ uð2Þ ð19Þ
rð1Þ � n ¼ rð2Þ � n ð20Þ

� Between the media and the adventicia, the displacements and normal stresses must be continuous, leading to:

uð2Þ ¼ uð3Þ ð21Þ
rð2Þ � n ¼ rð3Þ � n ð22Þ

� The normal components of the adventicia stresses must be zero:

rð3Þ � n ¼ 0 ð23Þ

Combining these boundary conditions with Eqs. (7)–(12) and taking into account Eqs. (4)–(6), and (14) yield for each
mode number ðn;mÞ the following linear system

½M� xf g ¼ 0f g ð24Þ

where

xf g ¼ G A1 B1 C1 D1 E1 F1 A2 B2 C2 D2 E2 F2 A3 B3 C3 D3 E3 F3f gT

½M� is a 19� 19 matrix whose components are calculated using the Appendix A. For a non-trivial solution, the determinant of
the matrix [M] must be equal to zero

det½M� ¼ 0 ð25Þ

This equation indicates a relationship between the speed of sound in fluid and the elastic constants. The roots of Eq. (25) give
the natural frequencies f ¼ x=2p of the cylindrical oscillations.

2.4. Numerical solution: weak formulation in ðuð1Þ; uð2Þ; uð3Þ; pÞ

The used numerical formulations include the displacement formulation (Hamdi, Ousset, & Verchery, 1978), the potential
formulation (Morand & Ohayon, 1979), the pressure formulation (Parthasarathi, Grosh, & Nuttall, 2000) and the combination
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of some of them (Bathe, 1996). Finite element method is used to extract the natural frequencies and modal shapes. To com-
pute the natural vibration modes of a fluid alone, the fluid is typically described either by pressure or by displacement poten-
tial variables. When the fluid is coupled with a solid, standard methods to solve Eqs. (1)–(6) consist in eliminating either the
pressure or the displacement potential (Mellado & Rodrguez, 2001). However, in both cases non-symmetric eigenvalue prob-
lems are obtained (see, for instance, Zienkiewich & Taylor, 1989). To avoid this drawback, Morand and Ohayon introduce in
Morand and Ohayon (1979) an alternative procedure which consists in using pressure and displacement potential simulta-
neously. In this section we summarize their approach; further details and discussions can be found in their book (Morand &
Ohayon, 1995).

In order to obtain a weak formulation for Eqs. (1) and (13), firstly (1) is multiplied by a test function v ¼ v1;v2;v3ð Þ 2 V
with

V ¼ ðv1;v2;v3Þ 2 H1ðX1Þ �H1ðX2Þ �H1ðX3Þ; v3 ¼ 0 ðC3Þ
n o

ð26Þ

Now, by integrating by parts in X1 (intima), X2 (media) and X3 (adventitia) (i.e., using Green’s formula for tensor fields) and
taking into account the boundary conditions, we obtain

X3

i¼1

Z
Xi

r uðiÞ
� �

: e við Þdx�x2
Z

Xi

qiu
ðiÞ � vidx

 !
�
Z

C
pn � v1dC ¼ 0 ð27Þ

Secondly, multiplying (13) by a test function q 2 Q ¼ H1ðXf Þ and taking into account boundary conditions we getZ
Xf

rp � rqdx�x2
Z

Xf

pq
c2

f

dxþ
Z

C
qf uð1Þ � nqdC

 !
¼ 0 ð28Þ

By using again Lagrange elements, where uðiÞh 2 P2 � P2 et ph 2 P1, discretization of the weak formulation induces a non sym-
metrical system

K1 O O �B
O K2 O O
O O K3 O
O O O Kp

2
6664

3
7775

U1

U2

U3

P

2
6664

3
7775 ¼ x2

M1 O O O
O M2 O O
O O M3 O

Ma O O Mp

2
6664

3
7775

U1

U2

U3

P

2
6664

3
7775 ð29Þ

where U1; U2; U3 and P are the vectors of nodal values for uð1Þ; uð2Þ; uð3Þ and p, respectively, and the submatrices of Eq. (29)
are defined byZ

Xi

rðuðiÞÞ : eðviÞdx ¼ VT
i KiUi;

Z
Xi

qiu
ðiÞ � vidx ¼ VT

i MiUiZ
C

pv1 � ndC ¼ VT
1BP;

Z
C
qf uð1Þ � nqdC ¼ Q T MaU1Z

Xf

rp � rqdx ¼ Q T MpP;

Z
Xf

pq
c2

0

dx ¼ Q T KpP

for i ¼ 1;2;3 ; where V1; V2; V3 and Q are the vectors of nodal values for v1; v2; v3 and q, respectively. Ma is the added
mass matrix (symmetric and positive definite Morand & Ohayon, 1995). Ki (resp. Mi) and Kp (resp. Mp) are stiffness (resp.
mass) matrices attributed to the aorta layer i and the blood respectively. The non symmetrical system (29) is solved by using
Comsol Multiphysics software where a condensation technique is applied for avoiding spurious modes generally inherent to
this class of problems.

3. Longitudinal, torsional, flexural and breathing mode vibration

The results presented in Eq. (25) are a general natural frequencies equation. For some simpler modes, the above men-
tioned method can be simplified. For example see the following.

3.1. Torsional mode vibration

The torsion mode vibration is such a mode in which the scalar components of the displacement uðiÞr and uðiÞz are zeros and
only the circumferential displacement uðiÞh is independent of h. This condition is achieved if /i ¼ vi ¼ 0. Through (8) and (11)
this gives for the non-vanishing components of displacement and stresses

uðiÞh ¼ �
@wi

@r
; rðiÞrh ¼ �2li

@2wi

@r2 þ
k2

wi

2
wi

( )
ð30Þ

Thus, the general solution for wi must be constructed from the set
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wi ¼ CiJ0 kwi
r

� �
þ DiY0 kwi

r
� �� �

sin kzzð Þ exp jxtð Þ ð31Þ

In this case the boundary conditions Eqs. (17)–(23) become

rð1Þrh r; zð Þ ¼ 0

uð1Þh r; zð Þ ¼ uð2Þh r; zð Þ; rð1Þrh r; zð Þ ¼ rð2Þrh r; zð Þ
uð2Þh r; zð Þ ¼ uð3Þh r; zð Þ; rð2Þrh r; zð Þ ¼ rð3Þrh r; zð Þ
rð3Þrh r; zð Þ ¼ 0

Then, Eq. (24) becomes

½T� xf g ¼ 0f g ð32Þ

where

xf g ¼ C1 D1 C2 D2 C3 D3 Gf gT

½T� is a 7� 7 matrix whose components are calculated using the Appendix A. Solving det½T� ¼ 0 gives the torsional modes.

3.2. Longitudinal mode vibration

Another simpler mode vibration is called longitudinal mode vibration in which uðiÞh ¼ 0 and uðiÞr and uðiÞz are independent of
h. This means that the motion is confined to planes perpendicular to the z-axis, which can move, expand and contract in their
planes. The solution for the displacement field and stress vector follows from Eqs. (7), (9), (10) and (12)

uðiÞr ¼
@/i

@r
� kz

@vi

@r
ð33Þ

uðiÞz ¼ kz/i þ k2
wi
vi ð34Þ

rðiÞrr ¼ li 2
@2/i

@r2 �
kix2

lic
2
Li

/i � 2kz
@2vi

@r2

( )
ð35Þ

rðiÞrz ¼ li 2kz
@/i

@r
þ k2

wi
� k2

z

	 
 @vi

@r

� �
ð36Þ

Thus, the general solution for /i and vi must be constructed from the set

Table 1
Dimensions and mechanical properties of the three-layers model.

E (Pa) q (kg/m3) m cf (m/s) R (m)

Fluid (Blood Xf ) 1000 1450 0.0105
Intima X1 385:643� 103 1150 0.45 0.0107

Media X2 1156:928� 103 1150 0.45 0.0119

Adventitia X3 385:643� 103 1150 0.45 0.0125

Table 2
The first 16 coupled frequencies f (Hz) of an arterial wall in the case of one-layer model.

No. ðn;mÞ Present FEM Difference (%) Mode shape

1 (1,1) 17.37 17.37 0.00 Flexural
2 (2,1) 35.81 35.82 0.02 Breathing
3 (0,1) 40.20 40.20 0.00 Longitudinal
4 (2,2) 45.68 45.69 0.02 Breathing
5 (1,2) 53.10 53.10 0.00 Flexural
6 (2,3) 66.11 66.11 0.00 Breathing
7 (0,2) 77.66 77.66 0.00 Longitudinal
8 (0,1) 79.37 79.37 0.00 Torsional
9 (1,3) 89.27 89.27 0.00 Flexural

10 (2,4) 92.61 92.62 0.01 Breathing
11 (3,1) 104.32 104.35 0.02 Breathing
12 (3,2) 109.56 109.59 0.02 Breathing
13 (0.3) 110.70 110.70 0.00 Longitudinal
14 (3.3) 119.83 119.87 0.03 Breathing
15 (1.4) 120.76 120.76 0.00 Flexural
16 (2.5) 121.52 121.55 0.02 Breathing
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/i ¼ AiJ0 k/i
r

� �
þ BiY0 k/i

r
� �� �

sin kzzð Þ exp jxtð Þ ð37Þ
vi ¼ EiJ0 kwi

r
� �

þ FiY0 kwi
r

� �� �
cos kzzð Þ exp jxtð Þ ð38Þ

In this case the boundary conditions Eqs. (17)–(23) become

@p r; zð Þ
@r

¼ qf x
2uð1Þr r; zð Þ

rð1Þrr r; zð Þ ¼ �p r; zð Þ; rð1Þrz r; zð Þ ¼ 0

uð1Þr r; zð Þ ¼ uð2Þr r; zð Þ; uð1Þz r; zð Þ ¼ uð2Þz r; zð Þ
rð1Þrr r; zð Þ ¼ rð2Þrr r; zð Þ; rð1Þrz r; zð Þ ¼ rð2Þrz r; zð Þ
uð2Þr r; zð Þ ¼ uð3Þr r; zð Þ; uð2Þz r; zð Þ ¼ uð3Þz r; zð Þ
rð2Þrr r; zð Þ ¼ rð3Þrr r; zð Þ; rð2Þrz r; zð Þ ¼ rð3Þrz r; zð Þ
rð3Þrr r; zð Þ ¼ rð3Þrz r; zð Þ ¼ 0

Then, Eq. (24) becomes

½L� xf g ¼ 0f g ð39Þ

Fig. 3. The flexural coupled modal shapes of arterial wall of ðn;mÞ.

Fig. 4. The breathing coupled modal shapes of arterial wall of ðn;mÞ.
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Fig. 5. The longitudinal coupled modal shapes of arterial wall of ðn;mÞ.

Fig. 6. The torsional modal shapes of arterial wall of ðn;mÞ.
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Fig. 7. Variation of the torsional frequencies with m.
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where

xf g ¼ A1 B1 E1 F1 A2 B2 E2 F2 A3 B3 E3 F3 Gf gT

½L� is a 13� 13 matrix whose components are calculated using the Appendix A. Solving det½L� ¼ 0 gives the longitudinal
modes.

3.3. Flexural and breathing mode vibrations

The mode shape n ¼ 1 is called flexural mode vibration in which all components of the displacement are non-vanishing
and depend on r; h and z. The mode shape n P 2 is called breathing mode vibration in which all components of the displace-
ment are non-vanishing and depend on r; h and z.

4. Results and discussion

For the numerical examples, geometrical and mechanical properties of the three-layers model are reported on the Table 1
after (Gao et al., 2006). For the two-layers model (E ¼ 1052:65� 103 (Pa)) and one-layer model (E ¼ 840:366� 103 (Pa)) we
utilize properties obtained by averaging the different layers stiffness.

With the derived frequency equations, natural frequencies are calculated with the software Mathematica. To validate the
analytical results, the coupled natural frequencies and mode shapes are also computed using Comsol Multiphysics Finite Ele-
ment Analysis Simulation Software. Table 2 shows the comparison of the first sixteen coupled frequencies and the corre-
sponding mode shapes of an arterial wall in the case of one-layer model by FEM (Eq. (24)) and the present method (Eq.
(29)). Table 2. In the first sixteen frequencies, four correspond to flexural vibration, eight to breathing vibration, one to tor-
sional vibration and one three longitudinal vibration. The very good agreement is observed between the results of the pres-
ent method and those of FEM and the maximal relative difference ((FEM-Present)/Present) is only 0.03%.

Figs. 3–6 show, respectively, the first five coupled modal shapes of the flexural, breathing, longitudinal and torsional
vibrations. In order to highlight modal shapes, one has increased the scale of visualization. Large deformations on the figures
are purely visual. The modal shape can be regarded as the mode ðn;mÞ, where n is the modal number in the circumferential
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Fig. 8. Variation of the coupled longitudinal frequencies with m.
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Fig. 9. Variation of the coupled flexural frequencies with m.
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direction and m is the modal number in the axial direction. The modal shapes are not in order with the parameters n and m.
The frequency of mode (2,2) is lower than that of mode (1,2), for example. This feature of cylindrical vibration is different
from that of beam vibration in which the order increases with the modal parameter. Therefore in the vibration of the cyl-
inder, one should be careful as to find the right mode of the vibration.

We observe that modal shapes are not sensibly modified by accounting for multi-layers aspects. But this is probably due
to the axisymmetry of the domain. The presence of the fluid has low influence on the modal shapes because the added mass
is diagonal. The coupling is light in such a case.

In this paper, the effects of cylindrical parameters on the coupled natural frequencies of cylindrical arterial wall are pre-
sented with the present method. In these studies, investigations are carried out to study the effects of circumferential mode
n, axial mode m, and multi-layers on the coupled frequencies.
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Fig. 10. Variation of the coupled breathing frequencies with m.
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Fig. 12. Variation of the coupled and uncoupled longitudinal frequencies with n.
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First, one investigates how the coupled frequencies for different models vary with the axial mode m. Figs. 7–9 show that,
the frequencies increase as the axial mode m increases. The presence of multi-layers do not affect the coupled natural fre-
quencies except the breathing modes vibrations Fig. 10 where we observe a slow variation of the coupled natural frequen-
cies. In the following we study the frequency curves of one-layer model.

Secondly, one investigates how the coupled frequencies vary with the axial mode m and circumferential mode n for one-
layer model. Fig. 11 shows that, the coupled frequencies first decrease and then increase as the circumferential mode n
increases. All the m frequency curves converge when n is large which means that for large mode n the frequencies are only
determined by the n and regardless of the axial mode m.

Thirdly, one investigates how the dense fluid (added mass) affects the frequencies. Figs. 12–14 show the coupled and
uncoupled frequencies, varying with the circumferential mode n for one-layer model. As n increases, the difference between
the coupled and uncoupled frequencies increases. This behavior is also found for other models.

5. Conclusions

This paper investigates the natural coupled frequency analysis of an aortic injury mechanism. We use analytic and
numerical methods for better understanding the mechanisms of this injury. The paper focuses on the biomechanics within
the ascending aorta which characterizes the pressure and flow of the entire vascular system (see Fig. 1). Indeed, this branch
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Fig. 13. Variation of the coupled and uncoupled flexural frequencies with n.
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Fig. 14. Variation of the coupled and uncoupled breathing frequencies with n.

Table 3
Variation of the uncoupled breathing frequencies of an arterial wall.

ðn;mÞ Three-layers Two-layers One-layer

ð2;1Þ 49.12 53.15 57.93
ð2;2Þ 64.78 68.38 72.98
ð2;3Þ 96.68 99.91 104.28
ð2;4Þ 136.68 140.09 144.56
ð2;5Þ 178.89 182.99 187.88
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is the first part of the system receiving the blood from the heart at the opening of the aortic valve, during the systolic phase.
The study and the understanding of the dynamics of this branch are nevertheless complicated due to the fluid–structure cou-
pling effects and due to the radially heterogeneity of the organ (e.g., Pearson et al., 2008). The obtained results have high-
lighted some points. One-layer model, two-layers model and three-layers model seem to give comparable results with
regards of the modal shapes, and the coupled natural frequencies of the coupled aorta-blood are slightly influenced by
the presence of multiple layers. The system behavior depends strongly on the boundary conditions. The arterial wall prop-
erties (multi-layers) do not modify the natural frequencies. In fact the low variation of frequencies relative to the number of
the arterial wall layers is not due to the use of a linear model. But it is mainly due to the two phenomena. On one hand, the
stiffness of the fluid provided by the fluid is greater than those of the arterial walls Ef ¼ qf c

2
f ’ 2:109 Pa. On the other hand,

the added mass effect plays an important role in the frequency variations (Axisa & Antunes, 2007). Indeed, using the same
model of the arterial wall, without fluid, Table 3 shows the sensitivity of the natural frequencies according to the number of
arterial layers. Finally this study is designed to analyse the influences of the arterial wall properties (multi-layers) and the
blood-aorta interaction rather than to reproduce the complex transient dynamic analysis of the vessels (e.g., Gerbeau,
Vidrascu, & Frey, 2005 and Figueroa, Vignon-Clementel, Jansen, Hughes, & Taylor, 2006).

Appendix A

The scalar components of the displacement vector uðiÞ in the arterial layers is given in terms of potentials as

uðiÞr ¼ Aiu
ðiÞ
1 ðrÞ þ Biu

ðiÞ
2 ðrÞ þ Eiu

ðiÞ
3 ðrÞ þ Fiu

ðiÞ
4 ðrÞ þ Ciu

ðiÞ
5 ðrÞ þ Diu

ðiÞ
6 ðrÞ

n o
cos nhð Þ sin kzzð Þ exp jxtð Þ ðA:1Þ

uðiÞh ¼ Aiv ðiÞ1 ðrÞ þ Biv ðiÞ2 ðrÞ þ Eiv ðiÞ3 ðrÞ þ Fiv ðiÞ4 ðrÞ þ Civ ðiÞ5 ðrÞ þ Div ðiÞ6 ðrÞ
n o

sin nhð Þ sin kzzð Þ exp jxtð Þ ðA:2Þ

uðiÞz ¼ Aiw
ðiÞ
1 ðrÞ þ Biw

ðiÞ
2 ðrÞ þ Eiw

ðiÞ
3 ðrÞ þ Fiw

ðiÞ
4 ðrÞ

n o
� cos nhð Þ cos kzzð Þ exp jxtð Þ ðA:3Þ

The stress tensor in the arterial layers r uðiÞ
� �

is given by Hooke’s law in terms of potentials as

rðiÞrr ¼ AiS
ðiÞ
1 ðrÞ þ BiS

ðiÞ
2 ðrÞ þ EiS

ðiÞ
3 ðrÞ þ FiS

ðiÞ
4 ðrÞ þ CiS

ðiÞ
5 ðrÞ þ DiS

ðiÞ
6 ðrÞ

n o
cos nhð Þ sin kzzð Þ exp jxtð Þ ðA:4Þ

rðiÞrh ¼ AiT
ðiÞ
1 ðrÞ þ BiT

ðiÞ
2 ðrÞ þ EiT

ðiÞ
3 ðrÞ þ FiT

ðiÞ
4 ðrÞ þ CiT

ðiÞ
5 ðrÞ þ DiT

ðiÞ
6 ðrÞ

n o
sin nhð Þ sin kzzð Þ exp jxtð Þ ðA:5Þ

rðiÞrz ¼ AiZ
ðiÞ
1 ðrÞ þ BiZ

ðiÞ
2 ðrÞ þ EiZ

ðiÞ
3 ðrÞ þ FiZ

ðiÞ
4 ðrÞ þ CiZ

ðiÞ
5 ðrÞ þ DiZ

ðiÞ
6 ðrÞ

n o
cos nhð Þ cos kzzð Þ exp jxtð Þ ðA:6Þ

where

uðiÞ1 ðrÞ ¼ J0n k/i
r

� �
; uðiÞ3 ðrÞ ¼ �kzJ

0
n kwi

r
� �

; uðiÞ5 ðrÞ ¼
n
r

Jn kwi
r

� �
ðA:7Þ

uðiÞ2 ðrÞ ¼ Y 0n k/i
r

� �
; uðiÞ4 ðrÞ ¼ �kzY 0n kwi

r
� �

; uðiÞ6 ðrÞ ¼
n
r

Yn kwi
r

� �
ðA:8Þ

v ðiÞ1 ðrÞ ¼ �
n
r

Jn k/i
r

� �
; v ðiÞ3 ðrÞ ¼

nkz

r
Jn kwi

r
� �

; v ðiÞ5 ðrÞ ¼ �J0n kwi
r

� �
ðA:9Þ

v ðiÞ2 ðrÞ ¼ �
n
r

Yn k/i
r

� �
; v ðiÞ4 ðrÞ ¼

nkz

r
Yn kwi

r
� �

; v ðiÞ6 ðrÞ ¼ �Y 0n kwi
r

� �
ðA:10Þ

wðiÞ1 ðrÞ ¼ kzJn k/i
r

� �
; wðiÞ3 ðrÞ ¼ k2

wi
Jn kwi

r
� �

ðA:11Þ

wðiÞ2 ðrÞ ¼ kzYn k/i
r

� �
; wðiÞ4 ðrÞ ¼ k2

wi
Yn kwi

r
� �

ðA:12Þ

SðiÞ1 ðrÞ ¼ 2li J00n k/i
r

� �
� kix2

2lic
2
Li

Jn k/i
r

� �" #
ðA:13Þ

SðiÞ2 ðrÞ ¼ 2li Y 00n k/i
r

� �
� kix2

2lic
2
Li

Yn k/i
r

� �" #
ðA:14Þ

SðiÞ3 ðrÞ ¼ �2kzliJ
00
n kwi

r
� �

; SðiÞ5 ðrÞ ¼
2nli

r2 rJ0n kwi
r

� �
� Jn kwi

r
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ðA:15Þ

SðiÞ4 ðrÞ ¼ �2kzliY
00
n kwi

r
� �

; SðiÞ6 ðrÞ ¼
2nli

r2 rY 0n kwi
r

� �
� Yn kwi

r
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ðA:16Þ
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TðiÞ1 ðrÞ ¼
2nli

r2 Jn k/i
r

� �
� rJ0n k/i

r
� �� �

ðA:17Þ

TðiÞ2 ðrÞ ¼
2nli

r2 Yn k/i
r

� �
� rY 0n k/i

r
� �� �

ðA:18Þ

TðiÞ3 ðrÞ ¼
2nkzli

r2 rJ0n kwi
r

� �
� Jn kwi

r
� �� �

ðA:19Þ

TðiÞ4 ðrÞ ¼
2nkzli

r2 rY 0n kwi
r

� �
� Yn kwi

r
� �� �

ðA:20Þ

TðiÞ5 ðrÞ ¼ �li 2J00n kwi
r

� �
þ k2

wi
Jn kwi

r
� �h i

ðA:21Þ

TðiÞ6 ðrÞ ¼ �li 2Y 00n kwi
r

� �
þ k2

wi
Yn kwi

r
� �h i

ðA:22Þ

ZðiÞ1 ðrÞ ¼ 2likzJ
0
n k/i

r
� �

; ZðiÞ3 ðrÞ ¼ li k2
wi
� k2

z

	 

J0n kwi

r
� �

ðA:23Þ

ZðiÞ2 ðrÞ ¼ 2likzY
0
n k/i

r
� �

; ZðiÞ4 ðrÞ ¼ li k2
wi
� k2

z

	 

Y 0n kwi

r
� �

ðA:24Þ

ZðiÞ5 ðrÞ ¼
nkzli

r
Jn kwi

r
� �

; ZðiÞ6 ðrÞ ¼
nkzli

r
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r
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