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Abstract

The industrial aerodynamic design of helicopter rotor bldeeds to consider the two typical flight conditions
of hover and forward flight simultaneously. Here, this muolbjective design problem is tackled by using a
genetic algorithm, coupled to rotor performance simulatmols. The turn-around time of an optimization loop
is acceptable in an industrial design loafhen using low-cost, low-fidelity tools such as the compreine
rotorcraft code HOST, but becomes excessively high wherd@yrimg high-fidelity models like CFD methods. To
incorporate high-fidelity models into the optimization powhile maintaining a moderate computational cost, a
Multi-Fidelity Optimization (MFO) strategy is proposeds a preliminary step, a HOST-based genetic algorithm
optimization is used to reduce the parameter space and se$at of blade geometries used for initializing the
high-fidelity stage. Secondly, the selected blades areaitated by CFD and used to construct a high-fidelity
surrogate model. Finally, a Surrogate Based Optimiza8B() is carried out and the Pareto optimal individuals
according to the SBO are recomputed by CFD for final perforreaavaluation. The proposed strategy is validated
step by step. It is shown that an industrially acceptablelemof CFD-simulations is shicient to obtain blade
designs with a significantly higher performance than theelias and then SBO results issued from a standard
Latin-Hypercube-Sampling initialization. The proposedr® strategy represents affieient method for the
simultaneous optimization of rotor blade geometries indr@and forward flight.

Keywords: aerodynamics, optimisation, helicopter rotor blades

1. Introduction twist distributions minimizing hover power consump-
tion, with constraints on forward flight performance and

The aerodynamic design of helicopter rotor bladé$all conditions, by using the gradient-based optimizer
has significantly evolved in the last fifteen year§&ONMIN [1]. Rotor blade optimization was also car-
Thanks to advances in simulation methods and if€d outat ONERA [35], by coupling the CONMIN op-
creased computational capabilities, trial and error afjhizer to the comprehensive rotor code R85 [6]. This
proaches (based on either simulation approaches of @plimization loop was used to maximize rotor perfor-
ferent degrees of complexity or on wind tunnel testt@nce in high-speed forward flight through the design
ing) [9], have been progressively replaced by automat‘éﬁsu'tame airfoil shapes and of their spanwise distribu-
design tools, which rely on the coupling of numericdlon- This work was later extended by including CFD
models for rotor aerodynamics and automatic optimiz&lmulations in the optimization loop [8]: optimizations
tion algorithms. were aimed at maximizing rotor hover performance in

Some of the early contributions to the automated d&'ms ©of Figure of Merit (F.M.) by changing the twist
sign of helicopter blades were done at NASA Lang|eg_|str|but|on over the blade, as well as the chord, sweep

Walsh et al. [31] automatically determined chord arfd?d dihedral angle at the blade tip separately. Then, all
geometrical parameters were combined into one opti-

mization to optimize the ERATO blade for hover per-
*Corresponding author. e-mail: debbie.leusink@airbum.co formance.
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The University of Bristol developed a similar opti-Specifically, considerable interest has been developed
mization loop for rotor blades in hover, using an optinto genetic algorithms because of their capability to
mizer based on a nonlinear programming algorithm afidd global optima and to handle multiple objective
CFD simulations for the flow analysi8, 4]. Radial ba- functions. The increased cost associated with the loss
sis functions were used to manage mesh deformatiafgradient-related information can be greatly alleviated
induced by geometrical changes: this allowed ensuribhg means of a straightforward parallel implementation.
high computational mesh quality; nevertheless, a largeFor complex industrial applications, however, the
number of parameters was to be specified, even to pesmber of cost-function evaluations required by ge-
form a simple twist optimizatiofb]. A recent step for- netic algorithms remains excessively high, especially
ward in the automatic optimization of rotor blades iwhen CFD simulation methods are used to compute the
hover conditions using CFD was represented by the iantities of intereg®4]. To circumvent this dficulty
troduction of adjoint methods, which take into accoumind drastically reduce the turn-around time of optimiza-
gradients of the cost functions with respect to the desition cycles, advanced optimization techniques, such as
parameters [14]. This enables affi@ent convergence optimization on a response surface and automatic up-
of the optimization algorithm towards the nearest optitating of this surface in Surrogate Based Optimization
mum, by using a small number of simulations. (SBO) have recently been introduced in rotor optimiza-

Most of the above mentioned references focus on ttien loops. For instance, Ref. [18)hd [19] discusa
optimization of rotor performance in hover flight onlySBO based on the combination of a genetic algorithm
However, for industrial applications, it is crucial to takevith a Neural-Network reconstruction of the response
into account in the design process forward flight condsurface from a limited number of CFD simulations for
tions also. Optimization of a device for more than orntbe optimization of dihedral and sweep distributions in
operating condition is known as multi-point optimizaforward flight.
tion (see e.g. [28]) and it naturally leads to the solu- Another strategy for reducing computational costs
tion of a multi-objective problem. For gradient-basecbnsists in generating a response surface based on both
optimizers, a well-known approach for solving multifow- and high-fidelity simulation tools [12], as illus-
objective problems is the weighted sum method, whittated in Figure 1. Unfortunately, values of the ob-
combines (linearly or not) all of the objectives into gctive function associated to a given blade geometry
single cost function through the introduction of suitabley low and high-fidelity simulation methods mayffer
weighting codficients. An example of this kind of op-significantly. Therefore, to integrate information from
timization strategy is represented by twist distributiolow- and high-fidelity simulations into a single surro-
optimizations of the 7A blade in hover flight carriedjate model, the objectives are scaled by a factor that
out at ONERA using various optimization and simuladepends on the specific low- and high-fidelity models
tion methods [20]. DLR also carried out gradient-baséd use. The actual optimization is then performed on a
two-point blade optimizations using weighting e metamodel which is built from low-fidelity simulations,
cients for hover and forward flight conditiofis7]: ro- combined with scaled high-fidelity simulations. Un-
tor performance predictions were obtained by meansfoftunately, this technique only works when response
CFD simulations weakly coupled to the comprehensigearfaces associated to the low- and high-fidelity models
rotor simulation code HOST [10] to account for bladenly differ by a simple scaling, but their shapes are es-
elasticity. An iterative procedure was required to cogentially the same. If this is not the case, the optimizer
ple the CFD and HOST codes, which increased coimas trouble in identifying a suitable search direction to-
putational cost significantly. The main shortcoming afard the actual optimum.
these optimizations is the weighted-sum method, as thisAn industrial application of two-point SBO at
requires the selection of appropriate design points aAdusta-Westland was discussed in [26]: a genetic algo-
their associated weights. rithm was coupled with a panel method code to compute

In parallel with the improvement of simulation toolgotor performance in hover. The proposed methodology
for rotor performance evaluation, significant progresgas demonstrated by simultaneously optimizing twist,
has been done on the optimization techniques theamord and sweep laws for a rotor blade in twadreti-
selves. These have evolved from optimizations usnt forward flight conditions while constraining hover
ing almost exclusively gradient-based algorithms, fight performance. In order to reduce the number of
more general multi-objective optimization algorithmssimulations required to evaluate rotor performance, a



surrogate model based on an Artificial Neural Networdiscussed in Section 3. Finally, the proposed method-

(ANN) was employed.
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Figure 1: Combination of low- and high-fidelity simulatiooots in
Surrogate Based Optimization, from [12]

ology is applied to the optimization of the ONERA 7A
blade, which was extensively investigated in wind tun-
nel tests [20].

2. Simulation tools for rotor performance predic-
tion

2.1. Low-fidelity model: HOST code

The Helicopter Overall Simulation Tool (HOST) [10]
is a comprehensive rotorcraft code developed at Airbus
Helicopters. Aerodynamic forces are calculated by in-
tegrating the local lift as computed from 2D polars for
small spanwise blade elements. The local velocity and
angle-of-attack are obtained by adding the induced ve-
locity to the local rotational and forward flight speed.
Corrections for three-dimensional, transonic, Reynolds
or sweep #&ects may be applied. Rotor equilibrium
position is found by iteratively correcting blade posi-
tions in terms of pitch, flap and lead-lag angles accord-
ing to the rotor loads. For the computations presented
in the following, HOST simulations are performed us-
ing the Finite State Unsteady Wake (FiSUW) model [7]
for modelling the induced velocity. This model was se-
lected after a preliminary accuracy study described in
[22].

HOST relies on a simplified physical representation
of blade aerodynamics, but enables quick estimates of
rotor performance. Specifically, the two-dimensional

In the present work, we move a step forward in thfpproach used in HOST simulations does not account

two-point optimization of helicopter blades by incorp
rating cost-function evaluations based on a CFD mo

or 3D effects, where the flow exhibits significant de-
partures from an essentially (locally) two-dimensional

both for hover and forward flight conditions. To drastig,\  Moreover. in the aim of reducing computational

cally reduce computational cost intrinsic to CFD sim
lations, we develop a two-step multi-fidelity optimiz

%osts, computations presented in the following do not
ake into account blade deformations (see [22] for a dis-

tion strategy, which blends together a muIti—objectiv&Ssion)

genetic algorithm, a surrogate model, and twéett

ent simulation tools for rotor performance evaluation, 5 - High-fidelity modelelsA CFD code

a low-fidelity, and a high-fidelity one. The former is
the comprehensive rotor code HOST [10], which pr%
vides quick estimates of rotor performance based on.a
blade element method; the latter is the CFD cets#\
[11]. The goal of the present work is to obtain a Parefo
Optimal Front, from which one optimal blade geometrg

The numerical flow solverelsA is developed at
NERA [11]. It solves the compressible Reynolds-
veraged Navier-Stokes (RANS) equations by means
f a finite volume discretization on multi-block struc-
ured meshes. Given a mesh c@ll the RANS equa-
ons write:

may be selected, taking into account for additional rotor

blade design objectives, such as vibrations and acous-

tics.

V\/tdQ+9§ F- ﬁdS:deQ 1)
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The paper is organized as follows. Section 2 provides B
details of the low- and high-fidelity models. The desigwhereW is the conservative variable vectdt, is the
principles of the multi-fidelity optimization strategy ardlux density, including contributions from the inviscid



and viscous fluxes, an@l is a source term including, stage, our objective is to assess the capability of HOST
e.g., the contribution of apparent forces. Several spamdelsAto discriminate between filerent blade geome-
and time discretization schemes are available, as weks in terms of performance, both for hover and for-
as a variety of eddy viscosity and Reynolds stress turtwiard flight conditions, rather than providing accurate
lence models. Here, we chose for the numerical appr@bsolute performance predictions, since only trends of
imation of convective fluxes an AUSMscheme with variation of the performance as a function of the de-
second order MUSCL extrapolation [25]. For turbusign variables are required for optimization. To this
lence modelling, the RANS equations are supplement@d, we consider three flierent blade geometries that
by Menter's SSTk — w turbulence model [27], which were experimentally investigated at Airbus Helicopters
provides a reasonably good representation of turbul¢®r Blade EC1 is a simple straight rectangular blade
shear stresses in boundary layers subject to an advense represents the baseline geometry. Blade EC2 dif-
pressure gradients. Both the turbulence model and disrs from EC1 by its twist distribution. Finally, EC3
cretization method were selected according to prelindiffers from EC1 because of its chord law. Simula-
nary studies [22, 23]. tions are compared to performance measurements of
Hover computations are carried out in the relatiilhese blades as gathered in the Modane wind tunnel
reference frame, and periodicity conditions are usedfr forward flight conditions. The blade performance
simulate only a single rotor blade. The numerical sis computed by HOST in terms of the lift-to-drag ratio
lution is driven to convergence towards the steady statd, whereas CFD simulations equivalently return the
by means of the Backward Euler implicit time integraratio of the rotor lift to the rotor torque céiécient,Z/C.
tion scheme, combined with a deferred correction tecBefinitions of these performance measures are given
nigue. The resulting system is solved by a LU-SSOR Section 3.1. In the following, we compare numeri-
technique [32]. cal and experimental results in terms of relative perfor-
Forward flight computations require taking into acmancep with respect to the reference EC1 blade, i.e.:
count flow unsteadiness. To this aim, time accurate sim-
ulations are carried out by using a constant time step, _ Pecx (3)
corresponding to a change in azimuthal blade position Pec1
by a quantityAy.. Time integration is done by means
of the second-ordérackward diference schemgiven A comparison of HOST computational results and
by: wind tunnel measurements is given in Figure 2, while a
comparisonto CFD simulation results is given in Figure
13wt _own 4 ] 4 Ra(W™D) =0 (2) 3 Thesefigures provide trends of the normalizetbdi
Atl2 ence in /D andZ/C as a function of the forward flight
(1)) 1 ] o velocity Vh. Both simulation methods predict correctly
vyhereRQ(W )isa numencal gpprommaﬂpn 0f SPahat the modified twist law of EC2 has a negative in-
tial terms in Eq. 1 and\t is the integration time step.f,ence on forward flight performance, when compared
The nonlinear system of equations (2) is solved itergy g1 in agreement with wind tunnel measurements.
tively at each physical time stepby an approximated cqncerning chord law modifications, both models pre-
Newton method. For forward flight CFD computagic; 4 higher performance for the modified EC3 blade,
tions, the rotor equilibrium of blade flapping, IO't(:h'r‘gsimilalrly to wind tunnel results. More detailed vali-

and lead-lag motions are computed by HOST as a Pigyrions of the low-fidelity and high-fidelity model are
processing step, and then imposed as an input for CEQen in [22].

calculations. In other terms, we do not use so-called

. . . . o CFD computations in forward flight are based on a
weak coupling techniques, involving periodic ldeatq‘?ﬁtor equilibrium obtained from HOST. Yet, discrepan-
of the rotor equilibrium conditions [8]. This would re- '

.  eveles of sub q .cies between local flow fields obtained from both simu-
3:‘;{% zzvﬁrgr;g;ﬁs orsu seq_uen': HOST. an_f_ CFtl) S'Bion methods increase with forward flight velocity due
' g computational cost significantly. to differences in rotor equilibrium that are neglected in
the present decoupled approach. For this reason, we
chose to optimize the blades only at moderate forward
To validatethe simulation tools used in this studyflight velocities,where the &ect of rotor equilibrium is
various comparative studies are performed. At thigegligible

2.3. Preliminary validations
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Figure 2: Forward flight performance for three blades, espee in terms of the normalized aerodynantiticeency L/D, versus the forward
flight velocity. Left: wind tunnel measurements; right: HD8mputations
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Figure 3: Forward flight performance for three blades, espee in terms of the normaliz&{C ratio, versus the forward flight velocity. Left:
wind tunnel measurements; right: CFD computations

3. Optimization strategy and profile power, is expressed as:
3.1. Problem definition Co = P _ P 6
PT A T pAQRE ©

Our goal is to find rotor blade geometries that si- tip

multaneously optimize hover and forward-flight perfor-

mance. To Fh|s aim, a pair of relevant hofferward free-stream densityA the rotor disk surfaceYy, the
flight 0p_eratmg c_ondltlon_s_ Is selected. Rotor pe_rfo[)-lade tip speed an@ the rotor radius. The F.M. indi-
mance in hover IS q_uanufled by means of the I:'guEeates how ficiently the rotor generates the power nec-
of Merit (F.M.). This is defined as the ratio of ideal ro-

tor powerPigeq as calculated by Froude [16, 21] to th&ssary to hover, i.e. takes into account the impact of

In Equations (5) and (6)F is the rotor thrustp the

actual rotor powep: aerodynamic losses on rotor power generation. Our ob-
P ' jective is then to find rotor blade geometries that pro-
P c3/2 vide the highest possible F.M. for a given rotor loading
FM. = —deal _ =T (4) inhover, defined as:
P V2Cp
Z= 1t @)
where the rotor thrust céicientCy is defined as: - %prRVﬁp
T T
Cr= 2 = 2R2 ) i i -
pAVﬁp PAQR whereF; is the rotor lift,b the number of blades ara

the mean aerodynamic chord of a blade.
and rotor power cd@écientCp, based on the induced Rotor performance in forward flight is quantified



through the aerodynamidteciencyL /D of the rotor: Twist and chord laws are parameterized by Bézier
curves with 6 control points at fixed radial positions
~ (8) along the blade span. Ranges of variation of control
D P/Veo P points are depicted on the y-axis of Figure 4 both for
whereq is the inclination angle of the tip path planelWist and chord laws. These parameter ranges are se-
i.e. the plane formed by the blade tips, with respect gcted to include ONERA' 7A blade, used in the fol-
the axis perpendicular to the rotor hub. Ass small lowing application. A geometrical constraint is im-
in stabilized forward flight, then ces~ 1 andT cosa pqsgd on the mean aerodynamic chord, required to be
may be approximated as the helicopter weight v_\/|th|n 0.13 an_d 0.15m. As a r(_asul_t of the paramete_rlza—
Alternatively, forward flight performance can also b8ON. the solution of the optimization problem requires
measured in terms of the ratio of rotor lift to rotor torquén€ definition of 12 design parameters, represented by
codficients: Z/C, since the rotor power consumptioﬁhe y-axis values of Bézier control points for twist and
is directly proportional to rotor torqué for a specific chord laws.
flight condition with rotor loadindZ. Precisely, thero- 5,
tor torque coéicient is defined as:

~__Q
= 1obcR\2 ©
2 tip

L 3 T cosa N WV,

10 S

7A blade

odynamic twist [°]

parameter limits

Rotor torque is also considered as forward flight pe g
. . @ -
formance measure in [17]. For either of the two foi
ward flight performance measures, the objective is
identify a rotor geometry with the highest aerodynam
efficiency for a given forward flight velocity. —_
X : €
In practice, hover and forward-flight performance of;
ten lead to conflicting requirements on blade geomet &

As a consequence, the final design will generally repi 00_25

0.2 0.3 0.46 0.72 091 1
radial position [r/R]

0.5

parameter limits|

sent a trade4d between both conditions. I R R I 7Ablade_ | _
To achieve this, we formulate a multi-objective opti ¢ 1
mization problem of the form: 0.05
0.2 0.3 0.46 0.72 0.91 1
Find the set oksuch that hover and @ radial position [1/R]

forward flight performance are simultaneously maximi'g%
10

)

(ujre 4: Parameter ranges for twist (top) and chord (bottams

to find a Pareto Optimal Fromtheres € S is the vector
of design parameters describing the blade geom8try3.3. Optimizer and response surface modeller

being the set of admissible geometries. In this work we adopt a genetic algorithm (GA) as
o the optimizer. This choice is motivated by its capa-
3.2. Parameterization of the blade geometry bility of locating globally optimal solutions for multi-

A family of blade geometries is generated by definingodal problems, of finding the Pareto Optimal Front for
analytical expressions for the twist and chord laws. Timeulti-objective problems, and by its non-intrusiveness,
airfoil section is supposed to be the same all along théich opens the way to coupling with a variety of sim-
blade span. No attempt is made to optimize the swedlption tools. All of these properties make GAs well
law, since this would require taking into account consuited for the industrial optimization of rotor blades,
plex multi-disciplinary constraints. Similarly, we delib which naturally leads to the solution of multi-objective,
erately exclude from the automatic optimization proceaulti-modal problems. Precisely, the optimizer used
dure the blade root and tip regions, for which the simier the present computations is the Multi-Objective Ge-
lation tools in use are still not predictive enough. netic Algorithm (MOGA) available in the open source
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Dakota optimization library [1]. It can be coupled in In Eq. 11, theB; are polynomial functions of order
a straightforward way with both the low- and highand theg; are linear combination cdigcients. The first
fidelity model. In the following, the GA is run with term in the right-hand side of Eq. 11 is meant to cap-
an initial population of 80 individuals, which is let toture large scale variations of the response surface; er-
evolve over approximately 20 generations. The poprer functionz(x) is a stochastic process with zero mean,
lation can be initialized randomly (initialization fromvarianceo? and covariance described by a Gaussian
scratch) or from a pre-defined set of geometries, for inerrelation function, and it accounts for local fluctua-
stance based on a preliminary design of experimenisns with respect to the shape functiofihie order of
The MOGA available in DAKOTA uses a variable numthe polynomials functionk Details of the formulation
ber of individuals in each generation. With the setup d&r z(x) are given in [1, 29, 34]. These models are ex-
scribed above, the order of magnitude of cost-functigected to predict accurately highly nonlinear and irreg-
evaluations required by an optimization run is of the owlar function behaviours [33].
der of 1000. The surrogate model is finally coupled with the op-
For a low-fidelity model, this number is considered témizer. Periodic updates of the surrogate during the
be acceptable because a complete optimization run egtimization process may be carried out to improve its
be executed overnight. On the contrary, when compaecuracy as the optimization converges toward the opti-
tationally intensive models are used to evaluate the co¥m.
functions, the turn-around time of the whole optimiza-
tion process may become unacceptably high, especidlg¢. Setup of the Multi-Fidelity Optimization strategy
in an industrial context. For instance, a complete CFD-In this Section, we propose a Multi-Fidelity Opti-
based GA-optimization would have to a turn-arounglization (MFO) strategy, which aims at combining the
time of several months. quick and wide exploration capabilities of the design
To circumvent this dficulty, Surrogate-Based Op-space of the low-fidelity model combined to a GA, with
timization is adopted to reduce computational costhe greater accuracy of the high fidelity tool.
SBO requires the construction of an analytical model The MFO is made up of four subsequent steps.
relating design variables and cost functions, called a . ) i )
surrogate modelor response surfacéased on a pre- Step 1. A p_rehmmaryex_ploratlon othe Qe3|gn spaceis
liminary sampling of the design space. Model construc- carried out by using the low-fidelity model cou-
tion is done according to a predefined criterion. This pled to the GA. The non-dominated geometries
is called a Design of Experiment (DoE). Arffieient resulting from this initial step are, in general,
surrogate model should be able to provide an accurate "t optimal for the high-fidelity model. Nev-

representation of the design space by using a minimal  €rtheless, the low-fidelity model is considered
number of samples. as reliable enough to exclude regions of the pa-

In this work, the DoE is carried out using Latin Hy- rameter space leading to too low fitness values.

percube Sampling (LHS): the parameter space is d%t_ep 2. Based on th(_e results of Step 1, the varl_atlon
cretized by a uniform grid of points, then a subset of ranges of design pargmeters are reduced in or-
points is selected for cost-function evaluation [13]. Pre- der to exclude !ow-ﬂtness reglons. _The ad-
cisely, we randomly extract a subset of 80 points, from Ya”tage of _vv_o_rkmg ona rgduced design space
a grid of the same number of points in each direction. s the po$S|b|I|ty of achieving a more accurate
Then, a surrogate model is constructed from the sample construction of the response surface for a given

through a Gaussian Process (GP) modelling technique _ PoPulation size.
[1, 30]: data from the initial sample are interpolateg!®P 3. Compute rotor performance of a subset of ge-

through a multivariate normal distribution. Precisely, ometries extracted from the low-fidelity step
the GP is built as a linear combination of shape func- ~ With the high-fidelity tool. Precisely, the sam-
tionsB; plus a local correction term given by the error ple of designs used to construct the surrogate
functionz(x) [1, 15, 34]: model is composed by the blades having im-

proved performance with respect to the base-

L line design, but are not necessarily Pareto opti-

f(x) ~ ZﬁiBi +2(x) (11) mal, in order to ensure a good diversity of the
i—0 sample.



Step 4. A high-fidelity surrogate model is constructed e in forward flight, the design point is fixed at mod-
on the reduced parameter space using the re- erate forward flight speg@=0.3 (whereu is the ad-
sults of Step 4. vance parameter defined as the ratio of the forward

Step 5. Finally, a SBO is run on the high-fidelity-based ~flight speed with respect to the rotational speed at
surrogate model. The initial population is com-  the blade tipu = Vi/QR); and moderate blade
posed by the blade geometries selected in Step loading € = 15).

3, from the low-fidelity optimization. To reduce S .
) . Several optimizations are performed to validate the
computational cost, the surrogate model is not

updated during the optimization. optimization loop.
4.1. GA and SBO optimizations with HOST

First of all, we validate the SBO methodology against
a full GA optimization, taken as a reference. In both

cases, cost-function evaluations are based on the low-
1 @ fidelity model only.
The reference is obtained by running the MOGA over

20 generations, with a population composed of 80 indi-

The MFO strategy is schematizediigure 5

2 parameter select interesting 3 . . .
space reduction blade geometries viduals. We assume that convergence is achieved when
CED / performance improvement for both objectives is less
than0.5% over the last 5 generations. Figure 6 shows
H 4 the resulting Pareto optimal front (POF).
surrogate model _
- m =
ﬁ 5 a f . ey
- - h
A - .
Figure 5: Multi-Fidelity Optimization strategy for rotoridde opti- C h
o . | c.2| F 4
mization using HOST anelsA o B GA optimization |
i @ 7A blade =
L o o
0.01 F.M.

4. Application to the optimization of the 7A blade Figure 6: Pareto Optimal Front of the full GA, HOST-basedmjta-
tion

In this Section we apply the proposed optimization
strategy to improve the performance of the 7A blade. Twist and chord laws associated to Pareto-optimal in-
This blade, designed by ONERA, has a radius of 2.1aividuals from the full GA optimization are illustrated
and uses OA2XX airfoil sections of 13 and 9% relativia Figure 7. The curves are coloured by the corre-
thickness. The rectangular blade has a chord of 0.14ponding F.M. value. Blades with high twist gradi-
and a linear aerodynamic twist variation. The blade hasts and hyperbolic laws exhibit better hover flight per-
been extensively investigated and is often used for oftirmance, as predicted by blade element theory [21].

mization studies, for instance in [2, 17, 20]. On the contrary, nearly linear, low-gradient twist laws
We select the following hover and forward-flight conlead to better forward flight performance. Concerning
ditions as the optimization points: chord distributions, the best forward flight performance

is provided by blades with a low chord section near the
e in hover, the rotation speed equals 1014nmon blade tip and, more in general, a globally lower mean
andall computations use a collective pitch anglehord. Conversely, blades with high hover flight perfor-
that corresponds to maximum F.M. of the 7A refmances exhibit an increased chord throughout the span
erence blade and more particularly at the blade tip.



mance individuals. Unfortunately, the algorithm misses
part of the blades with high hover performance (char-
acterized by a high mean chord value). Nevertheless,
since the optimal design is in general chosen in order
to get a good tradefbbetween the two objectives, we
consider that missing part of the high F.M. portion of
the POF is an acceptable price to pay to achieve a re-
duction in computational cost.

Significant reductions in the number of cost-function
evaluations do not completely justify the use of the SBO
for HOST-based optimizations, but do represent a good
trade-dtf between cost and accuracy for high-fidelity
optimizations, as shown in the following.

wife, M
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Figure 7: Blade geometry laws of GA-optimized blades, crddiby

HOST-computed F.M. values

4.2. Multi-Fidelity Optimization

Then, a SBO optimization is performed using 80 The low-fidelity GA-HOST optimization discussed
blade geometries for initial response surface generationthe preceding Section is used in the MFO strategy
and 5 subsequent metamodel update steps consistinfpph preliminary exploration of the design space. This
20 added blade geometries. In total, 180 blade georgserves two purposesirst, it is used to reduce the pa-
tries are simulated within the SBO, compared to 1608meter space by excluding low-performance regions;
for the full GA. Fig. 8 compares the Pareto-optimaln the other hand, values of design variables corre-
front for the full GA optimization and the approximate&ponding to “interesting” blade geometries are used in
Pareto-front provided by the SBO with the above methe high-fidelity stage for surrogate model construction
tioned parameter setting. Cost function values assoaid SBO initialization.
ated to optimal designs for the SBO have been recalcuTo reduce the parameter space, the evolution of ro-
lated with HOST. A reasonable agreement is observeol performance during the optimization is studied as a
even if the SBO does not capture the whole extent of thenction of the design variables. For instance, Figures
POF (some favourable configurations for hover fliglt and 10 show variations the F.M. in hover and ¢gbL
are missing in the SBO optimization). All of the SBQn forward flight as functions of twist angle at blade tip
non dominated individuals represent a significant inand of the blade chord at a radial position correspond-
provement over the baseline configuration. ing to 0.46 R. Optimal twist at the blade tip tends clearly

Solutions obtained with the SBO algorithm displato be clustered in the range 10, —5] as the algorithm
similar geometrical features: namely, the mean aerodyenverges, so that the parameter space can be greatly
namic chord is reduced for high forward flight perforrestricted around these optimal values. Conversely, no



clear trend is observed when looking at performance
parameter as functions of the chord at 0.46R: in this
case, best fit results are clustered around twiterint
chord values, corresponding approximately to 0.12 and
0.17m. The parameter range is in this case reduced
to [0.12,0.20], corresponding to a diminution of only
20% with respect to the initial choice, to include both
types of blade geometries. In a similar way, the param-
eter range of all other design variables is reduced. Pre-
cisely, the modified parameter intervals contain 90% of
the blades of the last 5 generations. This method leads
to an overall parameter space reduction of about 40%. I R

The subsequent step of the MFO strategy consists in LE 04 b 08 !
using selected designs from those generated during the ~ 2°
low-fidelity step to construct the CFD-based response
surface. This set is chosen in such a way as to repre-
sent a large diversity of blade geometries and to lead
to a good quality surrogate model within this region of
interest.

Optimization evolution in the objective space is
shown in Figure 11. The first 4 generations are com-
posed by widely spread individuals and correspond to

— — — — generation 6 blades
— — — — generation 10 blades
Pareto Optimal blades, HOST

twist [°]

chord [mm]

= — — — generation 6 blades

the initial exploration of the design space. From the I ———— generation 10 blades

" ) . Pareto Optimal blades, HOST
6" generation on, the algorithm detects the correct di-

rection for maximizing both objectives simultaneously.
From this generation on, the Pareto Front is approached
and solutions are refined. To initialize the CFD-based
response surface on a large set of interesting desigrigjre 12: Blade geometry laws of low-fidelity selected ktgdcom-
generations 6 and 10 are selected. Their twist and ch d to Pareto Optimal blades issued from the low-fidetép sising
laws are compared to HOST-based POF blades in Fig-
ure 12. Both for chord and twist laws, generations 6 and
10 contain a large variety of geometries, encompassi~~
the HOST-based optimal blades.

The performance of the selected low-fidelity blade
(106 geometries in total) is then evaluated by CFI
Hover and forward flight performancefiencies are :S
expressed, as anticipated, in terms of F.M. 4y, re-
spectively. Figure 13 shows that a significant numb
of the selected blades exhibits better rotor performarZOI
at both flight conditions with respect to the referenc
blade. A N SN SN S S

The selected sub-set of geometries is used to ct PE—
struct a CFD-based surrogate model for the subsequei 0.05 F.M.
optlml_zatlon St?p. Figure 14 shows optlmal blade gEi-gure 13: CFD computation results of surrogate consiactor
ometries resulting from SBO. For both twist and choriggh.figelity phase
laws, design parameters associated to the optimized
blades are well within the set of geometries used for
metamodel construction, so that errors introduced by
the surrogate model can be assumed to be small.  blades issued from the SBO. CFD results for the ini-

Figure 15 presents CFD results for the Pareto-optint&ll design of the SBO and for designs belonging to the

1 n n n 1 n n n 1 J
592 0.4 0.6 0.8 1
r/R

MFO: initial designs from low-fidelity step
4 7A blade
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low-fidelity POF are also represented for comparisou.
Itis observed t,hat’ according to the high-fidelity CFnD—i ure 16: CFD computation results of initialization basedMFO
model, blades issued from the SBO stage have a mugh LHs strategy

better overall performance than blades generated by the

low-fidelity model.

To demonstrate the advantages of the proposed MFQrigure 17 compares POF designs issued from both
strategy, the preceding results are compared to th&O strategies. Twist distributions are found to be very
of a standard CFD-based SBO using a random initighmilar for the two strategies, except in the outer part of
ization of the full parameter space. As in the previoube blade. Chord laws, however, are significantly dif-
case, 106 blade geometries are generated, this timefdngnt. Blades optimized by the MFO strategy show
means of LHS, and evaluated by CFD. The initial vaboncave double taper laws, whereas LHS strategy op-
ues of the cost functions for both high-fidelity initialtimized blades exhibit convex taper and thus increased
ization methods are compared in Figure 1&:larger chord sections near the blade tip. This is due to the
number of initial designs obtained via the MFO strafact that diterent choices of the initial set of geometries
egy demonstrate a fitness improvement with respectiéad to diferent response surfaces and, consequently, to
the reference geometry, compared to the initial desigtigferent designs.
generated by the LHS strategiMote however that the Figure 18 compares the Pareto Optimal Fronts ob-
LHS initialization includes a higher number of designsined by both optimization strategies. Clearly, designs
with high forward flight performance in terms @f/C, obtained by applying the MFO strategy dominate POF

12



finding a better approximation of the actual CFD POF
for a given computational cost.

MFO: initial designs from low-fidelity step
B MFO: SBO POF designs
v LHS generated initial designs
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Figure 18: Comparison of SBO results obtained by using the©OMF
strategy and a LHS initialization. CFD computations

chord [mm]

MFO: POF designs
LHS: POF designs

5. Conclusions

The aerodynamic optimization of helicopter rotor
o blades is a particularly dicult design problem due to
' ’ r/R ’ the radically dfferent features encountered in the two
typical flight conditions of hover and forward flight. In
Eig_ure 17: Blade geometry laws of MFO and LHS strategy SBO Ofhis work, a genetic algorithm (GA) was chosen as the
timized blades . - - N
optimizer, because of its ability to handle intrinsically
multi-objective design problems. The drawback of a
GA is that it requires a high number of objective func-
designs provided by the LHS SBO. The reason is thain evaluations. This is acceptable for industrial appli-
designs used to construct the surrogate model in ME@tion when using a low-cost simulation tool, such as
are closer to the region of interest, and the resulting ape comprehensive rotorcraft code HOST, but it leads to
proximation of the response surface is more accuratmacceptably high computational costs when coupled
On the other hand, the LHS strategy finds blade geonte-high-fidelity CFD tools. A strategy for incorporating
tries with very good forward flight performance but prohigh-fidelity CFD information in the optimization loop,
vides designs with lower hover performance than MF@hile conserving a moderate computational cost is pro-
Now, for industrial applications, the central zone of theosed and analyzed. Results are used to reduce the de-
Pareto Optimal Front is the most important one fromsagn space to a region of high performance designs ac-
practical viewpoint, because it represents traffesalu- cording to this model, but still large enough to allow for
tions between the fierent objectives. Therefore, everan dfective search during the subsequent high-fidelity
if MFO strategy misses the high forward flight perstep. A set of “interesting” blade geometries is selected
formance part of the POF, this is not critical: on thamong the designs explored in the low-fidelity step, and
contrary, thanks to the preliminary design selection is used to initialize the high-fidelity phase. In the sec-
the low-fidelity phase, the MFO strategy convergis e ond stage, rotor performance of these selected blades
ciently toward the best tradeffisolutions. The forward is computed by CFD to generate a surrogate model on
shift of the POF obtained with the MFO strategy witlwhich the actual optimization is performed.
respect to that issued from a standard LHS initialization The proposed multi-fidelity optimization approach is
illustrates the ffectiveness of the proposed method iapplied to the optimization of the 7A blade for hover

60 |-
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and forward flight conditions simultaneously. The MFO[8] P. Beaumier, M. Costes, B. Rodriguez, M. Poinot,
strategy is shown to generate designs with improved B. Cantaloube, Weak and strong coupling between
performance with respect to the baseline design and to the elsA CFD solver and the HOST helicopter
POF designs obtained through a straightforward low-
fidelity genetic optimization. Moreover, the proposed
MFO strategy for SBO initialization is shown to be
more dfective than an SBO using a standard LHS ini{9]
tialization in producing blade geometries that represent
a good trade-fi between hover and forward flight per-
formance. In summary, the proposed strategy appears

to be a promising way for fast high-fidelity multi-point
rotor blade design. [
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