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Abstract. The fine description of complex fluids can be carried out by describing the
evolution of each individual constituent (e.g. each particle, each macromolecule, etc.).
This procedure, despite its conceptual simplicity, involves many numerical issues, the
most challenging one being that related to the computing time required to update the
system configuration by describing all the interactions between the different individ-
uals. Coarse grained approaches allow alleviating the just referred issue: the system
is described by a distribution function providing the fraction of entities that at certain
time and position have a particular conformation. Thus, mesoscale models involve
many different coordinates, standard space and time, and different conformational
coordinates whose number and nature depend on the particular system considered.
Balance equation describing the evolution of such distribution function consists of an
advection-diffusion partial differential equation defined in a high dimensional space.
Standard mesh-based discretization techniques fail at solving high-dimensional mod-
els because of the curse of dimensionality. Recently the authors proposed an alter-
native route based on the use of separated representations. However, until now these
approaches were unable to address the case of advection dominated models due to sta-
bilization issues. In this paper this issue is revisited and efficient procedures for stabi-
lizing the advection operators involved in the Boltzmann and Fokker-Planck equation
within the PGD framework are proposed.
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1 Introduction

The fine description of the behavior of a system composed by a series of microscopic
entities, e.g. particles or molecules dispersed into a solvent, requires the consideration of
all the entities as well as taking into account all existing interactions.

Despite the nowadays computational capabilities, the population of particles or macro-
molecules in a system of industrial interest is too large to be described in a discrete man-
ner by considering all the involved individuals.

One possibility to reduce the size of the discrete models lies in considering only the
particles of interest (that is, the suspended particles or the macromolecules), being the
others (solvent particles) taken into account indirectly from their averaged effects on the
particles of interest [26].

Thus for example, in the case of suspensions involving small rigid spherical particles,
the motion equation of a particle whose position is described by xi(t), is given by the
Langevin’s equation

m
d2xi

dt2
= ξ

(

dxi

dt
−V(xi)

)

+Fext
i (t); ∀i, (1.1)

where m denotes the particle mass, xi the position of particle i, ξ the friction coefficient,
V(xi) the fluid velocity at position xi and Fext

i (t) the other forces acting on particle i (com-
ing from an external potential or from solvent particles bombardment). We can notice that
even if this model does not incorporate explicitly the solvent particles population, their

effects are taken into account from the drift term ξ
( dxi

dt −V(xi)
)

as well as by the impact
forces of stochastic nature included into the term Fext

i (t).
In the case of inertialess particles this description was traditionally substituted by

continuous approaches involving the macroscopic field C(x,t) given the number of par-
ticles per unit of volume at position x and time t. The balance equation results in this case
the classical advection-diffusion equation

∂C

∂t
+V·∇C=∇·(D∇C)+S(x,t), (1.2)

where the diffusion term involving the diffusivity tensor D is related to the stochastic
interaction effects, V is the medium velocity and S(x,t) an eventual source term. Now,
standard discretization techniques can be applied for solving the resulting transient 3D
advection-diffusion equation (e.g. finite differences or finite elements among many other
possibilities). Since the use of discretization techniques applying on the continuous par-
tial differential equation requires the use of a mesh of the domain in which the model is
defined, and then the solution of a linear system (many in the case of transient nonlinear
models) in order to calculate the solution at any node of the mesh or grid, as soon as the
domain becomes too large, the solution of such linear systems can become a real bottle-
neck. To circumvent this issue an alternative is to come back to the stochastic discrete
approach that proceeds by tracking a large enough population of particles, whose path-
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lines result from two contributions, a drift related to V(x,t) and a random contribution
that follows adequate statistics.

In the general case involving inertial particles the system can be described by consid-
ering the distribution function f (x,v,t), that in this case represents the number of par-
ticles per unit volume that, at position x and time t, have a velocity given by v. Note
that v is a conformational coordinate because now the particles velocity does not coin-
cide with the medium velocity V and at each position and time, particles have a velocity
distribution that evolves in space and time.

Thus, the introduction of conformational coordinates in the system description in-
volves the increase of the model dimensionality. In what follows we consider two kind
of models, Boltzmann and Fokker-Planck models.

1.1 The Vlasov-Poisson-Boltzmann equation

We consider the dynamics of P electrically charged particles of mass m. When P becomes
too large, direct molecular dynamics simulations result prohibitive from the computing
time viewpoint. Thus, more than describing the system from the position and velocities
of all the particles, one could introduce the function f (t,x,v) given the number of particles
that at time t, are located within an elementary volume dx=(dx,dy,dz) placed at position
x and having velocities within the volume defined by dv=(du,dv,dw) around v. Thus,
the density balance writes

∂ f

∂t
+ v·∇x f + a(x,t)·∇v f = S(t,x,v), (1.3)

where ∇x and ∇v represent the gradient operator in the physical and velocity spaces re-
spectively. It is here assumed that the acceleration a= dv

dt does not depend on the velocity
(by this reason it is not affected by the differential operator ∇v). The source term S(t,x,v)
represents the so-called collision term that can be defined from an appropriate physical
modeling [53].

We do not need any physics to model the velocity field v because now it is a real co-
ordinate, like the spatial ones. On the contrary, we need to define the acceleration field
a(x,t). For this purpose we consider Newton’s law a= F

m , and compute the force acting
on the particles by taking into account the nature of the system, that in the case here ad-
dressed consists of a population of charged particles interacting by means of Coulomb’s
potential. Thus the electrostatic potential U(x,t) depends on the particles spatial distri-
bution that can be described from the marginal distribution f (x,t)

f (x,t)=
∫

R3
f (x,v,t)dv. (1.4)

Remark 1.1. 1. When particles are not charged the steady state solution of Eq. (1.3)
leads to the Maxwell-Boltzmann distribution when the appropriate choice of the
collision term describing the particles collisions is made.
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2. When the acceleration does not depend on the velocity (as was assumed in Eq. (1.3))
and the collision terms vanishes, an equivalence between the conservation equation
and Liouville’s theorem in the phase space can be established.

3. In general, modeling collision mechanisms is quite difficult. To circumvent this
difficulty and assuming that the equilibrium distribution is known feq(x,v,t), one
could approximate the collision term by

S(t,x,v)=
feq(x,v,t)− f (x,v,t)

τ
, (1.5)

where τ represents a relaxation time. This approximation leads to the so-called
BGK models [10].

4. The kinetic theory formalism allows transforming a discrete model into its continu-
ous counterpart. However, in general, continuous descriptions involve highly mul-
tidimensional spaces and their evolutions are governed by hyperbolic non-linear
partial differential equations. To solve this kind of models, appropriate stabilized
solvers, able to proceed in highly multidimensional spaces, are needed.

In the previous paragraphs we introduced some ideas related to kinetic theory mod-
els of systems composed of inertial particles. We are introducing in the next paragraphs
a model involving interialess particles whose description requires the consideration of
conformational coordinates [35]. A simple case consists of a population of rod-like inter-
tialess particles, whose distribution is given by ψ(x,p,t) where p defines rod orientations.

1.2 The Fokker-Planck formalism

Consider a dilute suspension of rod-like particles (short fibers, nanofibers, functionalized
carbon nanotubes or even rod-like molecules). The configuration distribution function
(also known as orientation distribution function) gives the probability of finding the par-
ticle oriented along a given direction. Obviously, this function depends on the physical
coordinates (space and time) as well as on the configuration coordinates, that taking into
account the rigid character of the particles, are defined on the surface of the unit sphere.
Thus, we can write ψ(x,t,p), where x defines the position of the rod center of mass, t the
time and p the unit vector defining the rod orientation. The evolution of the distribution
function is given by the Fokker-Planck equation

dψ

dt
= −∇p(ṗ ψ), (1.6)

where d/dt represents the material derivative. The orientation distribution function must
verify the normality condition

∫

ψ(p) dp = 1. (1.7)



F. Chinesta et al. / Commun. Comput. Phys., 17 (2015), pp. 975-1006 979

In the case of dilute suspensions the particles rotary velocity can be obtained from the
Jeffery’s equation that for rod-like particles reads

ṗJ = ∇v p−(pT ∇v p) p, (1.8)

where ∇v is the gradient of velocity tensor associated with the fluid flow undisturbed by
the presence of the suspended particles. When particle concentration increases particles
interactions occur modifying the Jeffery’s velocity. In these circumstances a term is added
to the Jeffery’s rotary velocity that tends to randomize the orientation distribution

ṗ = ∇v p−(pT ∇v p) p−Dr
∇pψ

ψ
= ṗJ−Dr

∇pψ

ψ
(1.9)

that, when introduced into the Fokker-Planck equation, leads to

dψ

dt
= −∇p(ṗ

J ψ)+∇p ·
(

Dr ∇pψ
)

, (1.10)

where ṗJ denotes the Jeffery’s rotary velocity expressed from Eq. (1.9) and Dr is a rotary
diffusion coefficient that some authors assume depending on the flow intensity.

In complex flows simulations the solution of the Fokker-Planck equations (1.6) or
(1.10) involves some numerical difficulties related to: (i) its multidimensional character,
i.e. ψ(x,t,p); (ii) the geometrical complexity of the physical domain Ω; (iii) its purely ad-
vective character in the physical space; and (iv) the advection effects in the conformation
space. These difficulties will be addressed in Section 1.4.

1.3 On the numerical solution of kinetic theory models

As argued above, the kinetic theory formalism allows transforming a discrete model into
its continuous counterpart. However, in general, continuous descriptions involve highly
multidimensional spaces and their evolutions are governed by hyperbolic non-linear par-
tial differential equations. To solve this kind of models, appropriate stabilized solvers,
able to proceed in highly multidimensional spaces, are needed.

1.3.1 Boltzmann’s model

When addressing the Boltzmann’s model previous issues where efficiently addressed by
considering the Lattice-Boltzmann Method (LBM) [31, 53]. The use of the LBM provides
many of the advantages of molecular dynamics, including clear physical pictures, easy
implementation, and fully parallel algorithms. The basic premise for using this simpli-
fied kinetic-type method for macroscopic fluid flows is that the macroscopic dynamics of
a fluid is the result of the collective behavior of many microscopic particles in the system
and that the macroscopic dynamics is not sensitive to the underlying details in micro-
scopic physics. The LBM ancestor is the lattice gas automata (see for example [25, 40])
which is constructed as a simplified, fictitious molecular dynamic in which space, time,
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and particle velocities are all discrete. It consists of a regular lattice with particles residing
on the nodes. Starting from an initial state, the configuration of particles at each time step
evolves in two sequential sub-steps: (a) streaming, in which each particle moves to the
nearest node in the direction of its velocity, and (b) collision, which occurs when parti-
cles arriving at a node interact and change their velocity directions according to specified
rules. The lattice Boltzmann method considers a number of velocity directions depend-
ing on the considered cell and a velocity value associated to each one of these directions
allowing to reach the neighbor location in the considered time step.

The interested reader can refer to [29, 30, 37, 47] for some theoretical aspects related
to the method and some specificities related to the mesh. The LBM method has been
successfully extended to problems involving non-regular grid with local mesh refinement
[51] and to flows around moving objects [50]. Aspects related to fluid flows and to the
solution of the Navier-Stokes equations can be found in [13, 32]. Other complex fluids
flows have been addressed by using the LBM, as for example viscous [56] and multi-
phase flow [33, 44], flows in porous media [55], or those involving colloidal suspension
[36]. Recently its use was extended to non Newtonian fluids flows [24]. Many other
aspects such as the ones related to boundary conditions, complex geometry, turbulence,
have been extensively addressed [14].

1.3.2 Fokker-Planck model

Fokker-Planck formalism is used to describe the evolution of the configuration distribu-
tion function, which represents the fraction of individuals having a particular configu-
ration at a space point and time. The first works concerning its resolution include the
Brownian dynamics approach used in the CONNFESSIT approach [48]. This approach
was considered in [52] for treating MBS (multi bead spring) models. A similar technique
was proposed in [54] in the context of MBS kinetic models, which introduces a change of
variable and uses a Monte-Carlo technique for treating the diffusion term. In these tech-
niques a high number of particles are introduced in the stochastic simulation to account
for Brownian effects. A multi-scale approach using deterministic particles for treating the
advection and a different set of particles to account for diffusion effects, which leads in
fact to a multi-scale approach, was considered in [34]. The same idea was used in the case
of short fibre suspensions flows in [15]. In that work, the discretisation of the advection
dominated Fokker-Planck equation governing the fibre orientation was carried out using
a particle technique, where the diffusion term was modelled from random walks. It was
pointed out that the number of fibres required in this stochastic simulation to describe
the fibre distribution increases significantly with the diffusion coefficient. Thus, it was
argued that for practical applications the use of the particle method in the framework
of a stochastic simulation is restricted to very slight diffusion effects. Another determin-
istic particle approach, very close to that proposed in [11], was analyzed in [3] using
smooth particles, but it was noticed that the impact of smoothing on the solution can
be significant. Moreover, the fact that the Fokker-Planck equation is defined in a multi-
dimensional space induces the necessity of using an extremely large number of particles,
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with the associate unfavorable incidence on the methods efficiency. The combination of
Brownian dynamics with a macroscopic treatment of motion equations is at the basis of
the micro-macro approaches deeply reviewed in [35].

When diffusion effects vary in a large interval, continuous approximations using a
fixed or moving mesh seem to be suitable. In this case accurate stabilizations are re-
quired for dealing with small diffusion effects. Some attempts at solving the Fokker-
Planck equation using a fixed mesh discretisation exist [12, 39]. The main difficulties in
this approach are related to the multidimensional character of the problem. Thus, the
linear systems obtained after usual implicit or semi-implicit space-time discretisations
are extremely large for a practical inversion. On the other hand, explicit discretisations,
which do not require matrix inversions, have the constraint of too small time steps.

The use of determinist mesh-based discretizations fails when addressing highly mul-
tidimensional Fokker-Planck equations and advanced techniques allowing circumvent-
ing the curse of dimensionality are needed.

1.4 Circumventing curse of dimensionality by using separated
representations

As just illustrated, the description of complex systems within a mesoscopic framework
requires in general the introduction of some (sometimes many) conformational coordi-
nates, that implies the increase of the dimensionality of the associated balance equations.
In these situations standard mesh-based discretization techniques fail because the curse
of dimensionality. Consider a problem defined in a space of dimension D for the un-
known field u(x1,··· ,xD). Here, the coordinates xi denote any usual coordinate related
to physical space, time, or conformation space, for example. In the simplest approach,
we seek a solution for (x1,··· ,xD)∈Ω1×···×ΩD. A mesh based approach in which each
coordinate involves M nodes will imply the order of MD degrees of freedom. As soon
as D becomes moderately high the number of degrees of freedom is out of the nowadays
computational capabilities.

Proper Generalized Decomposition — PGD — yields an approximate solution uN in
the separated form

uN(x1,··· ,xD)=
N

∑
i=1

F1
i (x1)· . . . ·FD

i (xD)=
N

∑
i=1

D

∏
j=1

F
j
i (xj), (1.11)

where both the number of terms N and the functions F
j
i (xj) are unknown a priori.

The representation (1.11) is similar to the classical separation of variables used for
solving partial differential equations analytically (in the few instances when this is at all
possible!). It is quite general in the sense that any polynomial can be expressed in that
form. The main difference between (1.11) and a classical polynomial representation is

that the functions F
j
i (xj), and not only their respective weights, are unknown a priori.
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The PGD approximation (1.11) is thus a sum of N functional products involving each

a number D of functions F
j
i (xj) that are unknown a priori. It is constructed by successive

enrichments, whereby each functional product is determined in sequence. At a particular

enrichment step n+1, the functions F
j
i (xj) are known for i≤ n from the previous steps,

and one must compute the new product involving the D unknown functions F
j
n+1(xj).

This is achieved by invoking the weak form of the problem under consideration. The
resulting discrete system is non-linear, which implies that iterations are needed at each
enrichment step. A one-dimensional problem can thus be defined in Ωj for each of the D

functions F
j
n+1(xj).

If M nodes are used to discretize each coordinate space Ωj, the total number of PGD

unknowns is N×M×D instead of the MD degrees of freedom involved in standard mesh-
based discretizations. Moreover, all numerical experiments carried out to date with PGD
show that the number of terms N required to obtain an accurate solution is not a function
of the problem dimension D, but it rather depends on the separable character of the
exact solution. The PGD thus often avoids the exponential complexity with respect to the
problem dimension.

Separated representations were successfully applied for solving the multidimensional
Fokker-Planck equation describing complex fluids in the framework of kinetic theory.
In [4], we addressed the solution of the linear Fokker-Planck equation describing multi-
bead-spring molecular models of polymer solutions in steady-state homogeneous flows.
The solution procedure was extended to non-linear kinetic theory descriptions of com-
plex fluids in [45]. The transient case was addressed in [5]. A deeper analysis of non-
linear and transient models was considered in [7]. Extension of these developments to
the simulation of complex flows was performed in [2,46,49], thus opening very encourag-
ing perspectives and claiming the necessity of defining efficient stabilization techniques.
Finally, PGD was implemented in [16] to solve the stochastic equation within the frame-
work of Brownian Configuration Fields. Models involving suspensions and colloidal
systems were considered in [1, 22, 27, 28, 41, 43] and kinetic descriptions of microstruc-
tural mixing in [17,42]. The interested reader can consult [19] for an exhaustive overview
of PGD applications in computational rheology and the more general reviews [18,20,21].

Multidimensional models encountered in the finer descriptions of matter (ranging
from quantum chemistry to statistical mechanics) were revisited in [6]. The multidimen-
sional chemical master equation was efficiently solved in [9]. Finally Langer’s equation
governing phase transitions was considered in [38].

2 Stabilized discrete form of the Boltzmann’s advection operator

Separated representations involved in Proper Generalized Decomposition strategies al-
low circumventing the curse of dimensionality, but when they are applied for solving
advection problems, the issue related to the advective stabilization must be carefully ad-
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dressed.
In what follows we consider the advection term in the Boltzmann equation (1.3) that

leads to the simplified steady-state transport equation

v·∇x f =0 (2.1)

that includes two major numerical difficulties: (i) it is multidimensional since f = f (x,v)
and (ii) it is purely advective. Note that v in the present case is a coordinate of the model,
a configurational one, because at each position x it is assumed the existence of many
particles with different velocities v.

In what follows and without loss of generality we are considering a one dimensional
space that implies f (x,v), x ∈ Ωx ⊂R and v ∈ Ωv ⊂R. Even if Ωv could be the whole
real axis, i.e. Ωv=(−∞,∞) in gas kinetics, here we assume a large enough finite interval
ensuring that the solution is fully contained inside. In the present case, because of the null
collision term, this hypothesis fully applies as soon as the boundary condition involves
velocities defined in a finite interval.

In the one-dimensional case Eq. (2.1) reads

v
∂ f

∂x
=0 in Ωx×Ωv, (2.2)

with Ωx=(0,L) and Ωv=[−U,U], U 6=∞.
The advective character of Eq. (2.2) requires enforcing boundary condition on Γl and

Γr, Γl =(x=0,y∈Ω+
v ) and Γr =(x= L,v∈Ω−

v ), being Ω+
v =[0,U] and Ω−

v =[−U,0].

2.1 A “naive” PGD-based discretization

The solution is searched by considering the simplest and more intuitive separated repre-
sentation of f (x,v)

f (x,v)≈
i=N

∑
i=1

Xi(x) Vi(v). (2.3)

In order to build-up such a separated representation we proceed iteratively. If we
assume that the n−1 terms of the finite sum (2.3) have been already calculated (n≤ N),
at iteration n we should calculate Xn(x) and Vn(v). For that purpose we are considering
the simplest strategy, the alternated directions fixed point algorithm widely considered
in our former works, that proceeds by assuming Vn known when calculating Xn and
then updating Vn from the just calculated Xn. The process continues until reaching the
convergence, that is, the fixed point of the nonlinear iteration. As soon as the new term of
the finite sum (2.3), Xn(x)·Vn(v) has been obtained, the solution accuracy is checked by
using an appropriate error estimator [8] and if the associated error is not small enough
a new couple of functions Xn+1(x) and Vn+1(v) will be calculated. In what follows we
are illustrating both steps, the one associated with the calculation of Xn(x) and the one
related to Vn(v).
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1. By assuming Vn(v) known (it is chosen randomly when starting the nonlinear iter-
ation loop) the weak form related to Eq. (2.2) writes:

∫

Ωx×Ωv

X∗ Vn v
dXn

dx
Vn dx dv=−

∫

Ωx×Ωv

X∗ Vn v
n−1

∑
i=1

(

dXi

dx
Vi

)

dx dv (2.4)

for all the test functions X∗ in an appropriate functional space and where the de-
pendence of Xi and Vi on the coordinates x and v respectively was omitted for the
sake of clarity.

Since all the functions involving the velocity coordinate v are known, by integrating
in Ωv, Eq. (2.4) reduces to:

∫

Ωx

X∗ α
dXn

dx
dx=−

∫

Ωx

X∗
n−1

∑
i=1

(

βi
dXi

dx

)

dx, (2.5)

where coefficients α and βi are given by:

α=
∫

Ωv

V2
n v dv, (2.6)

and

βi =
∫

Ωv

Vn Vi v dv, (2.7)

respectively.

The right hand member involves a function of x

g(x)=
n−1

∑
i=1

βi
dXi

dx
(2.8)

involving in turn functions that were calculated previously.

The strong form related to Eq. (2.5) reads

α
dXn

dx
=−g(x), (2.9)

an equation that could be integrated from the boundary conditions by using an
appropriate upwinding depending on the sign of α. We will come back to this issue
later.

2. When considering the just computed Xn(x) the weak form related to Eq. (2.2) writes:

∫

Ωx×Ωv

Xn V∗ v
dXn

dx
Vn dx dv=−

∫

Ωx×Ωv

Xn V∗ v
n−1

∑
i=1

(

dXi

dx
Vi

)

dx dv. (2.10)
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Since all functions involving the space coordinate x are known, by integrating in
Ωx, Eq. (2.10) reduces to:

∫

Ωv

V∗ γ v Vn dv=−
∫

Ωv

V∗
n−1

∑
i=1

(ξi v Vi) dv, (2.11)

where coefficients γ and δi are given by:

γ=
∫

Ωx

Xn
dXn

dx
dx, (2.12)

and

ξi =
∫

Ωx

Xn
dXi

dx
dx, (2.13)

respectively.

The right hand member involves a function of v

h(v)=
n−1

∑
i=1

ξi v Vi (2.14)

involving functions that were calculated previously.

The strong form related to Eq. (2.11) reads

v Vn=−h(v), (2.15)

equation that is purely algebraic.

The just described numerical scheme fails to construct the separated representation.
We are analyzing the possible reasons of this lack of convergence. First of all we should
discuss the way of prescribing boundary conditions. We assume that on Γl the solution
is fl(v) and that on Γr the solution is given by fr(v).

When considering the separated representation constructor just described, the usual
way to enforce Dirichlet boundary conditions consists of choosing some couples of sepa-
rated functions regular enough and that verifies the boundary conditions, and add those
terms to the first terms of the separated representation of f (x,y).

The simplest choice in the case here addressed consists of considering functions X1(x),
V1(v), X2(x) and V2(v) such that X1 ·V1+X2 ·V2 ensures the verification of boundary con-
ditions on both boundaries Γl and Γr. We consider:











X1(x)=1− x
L ,

V1(v)=

{

fl(v), v∈Ω+
v ,

0, v∈Ω−
v ,

(2.16)
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that allows enforcing the boundary condition on Γl and











X2(x)= x
L ,

V2(v)=

{

0, v∈Ω+
v ,

fr(v), v∈Ω−
v ,

(2.17)

that prescribes the boundary condition on Γr.

Thus, since the first two terms of the finite sum ensures satisfying the Dirichlet bound-
ary condition, all the other terms n>2 must vanish on the Dirichlet boundaries.

Physically, advection applies in the x-direction in Ω+
v and in the opposite direction in

Ω−
v , however the separated representation constructor only consider an ”averaged” one

when integrating Eq. (2.9):
{

Xn(x=0)=0, α≥0,

Xn(x= L)=0, α≤0.
(2.18)

Enforcing zero is only well defined in Ωx×Ω+
v when α ≥ 0 and in Ωx×Ω−

v when
α≤0. However the separated representation constructor cannot differentiate these cases
because there is no information on the velocity when solving the problem involving the
space coordinate (2.9).

2.2 Enhanced PGD-based discretization

The discussion that we just addressed should be very explicit for people using Lattice-
Boltzmann (LB) strategies. It is well known that LB strategies consist of two steps, the
so-called streaming that applies convection and the so-called collision that include all the
other mechanisms. In the streaming step, the nodal field is transported to the neigh-
boring nodes, and it differentiates each direction from its opposite in order to perform
an exact integration along the characteristics (exact because the nodal spacing and the
velocities are chosen in order to jump from each node to the neighboring nodes simulta-
neously at each time step). In our case the situation is a bit more complex because we are
considering not only some directions and a unique velocity value associated to each one
of these directions, but any direction (in 2D or 3D) and all the velocities in the interval Ωv.
However, inspired by the Lattice-Boltzmann procedures, we consider the enhanced con-
formational space (x,s,v+)∈(Ωx×Ωs×Ω+

v ), where s represents the velocity sign, v+=|v|
and Ωs ={−1,1}. The associated separated representation writes:

f (x,s,v+)≈
i=N

∑
i=1

Xi(x,s) Vi(v
+), (2.19)

where again inspired from LB techniques the space and the sign are maintained cou-
pled. In what follows we are analyzing how this alternative representation modifies the
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problem in space. By assuming Vn(v+) known (it is chosen randomly when starting the
nonlinear iteration loop) the weak form related to Eq. (2.2) writes:

∫

Ωx×Ωs×Ω+
v

X∗ Vn s v+
dXn

dx
Vn dx ds dv+

=−
∫

Ωx×Ωs×Ω+
v

X∗ Vn s v+
n−1

∑
i=1

(

dXi

dx
Vi

)

dx ds dv+. (2.20)

Remark 2.1. In this expression the integral involving the sign coordinate s is not mean-
ingful because this coordinate is discrete. In this case the integral on the parametric space
s must be read as a sum for the two possible values s=±1.

Now as all the functions involving the velocity coordinate v are known, by integrating
in Ωv, Eq. (2.4) reduces to:

∫

Ωx×Ωs

X∗ α s
dXn

dx
dx ds=−

∫

Ωx×Ωs

X∗ s
n−1

∑
i=1

(

βi
dXi

dx

)

dx ds, (2.21)

where coefficients α and βi are now given by

α=
∫

Ω+
v

V2
n v+ dv+, (2.22)

and

βi =
∫

Ω+
v

Vn Vi v+ dv+, (2.23)

respectively. The associated strong form reads:

α s
dXn

dx
=− s g(x) (2.24)

that results in two independent equations, one for s=1 and the other for s=−1

{

α dXn
dx =− g(x), Xn(x=0, s=1)=0,

−α dXn
dx = g(x), Xn(x= L, s=−1)=0,

(2.25)

that despite the fact of being formally identical both are integrated by using opposite
upwinding and then each one considers the appropriate boundary conditions.

The calculation of Vn(v+) does not implies any particularity. It is performed as de-
scribed in Section 2.1.
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3 Stabilized Fokker-Planck advection operators

In this section we are focussing on the discrete stabilized form of the advection operator
appearing in the Fokker-Planck equation that is more standard than the one involved in
the Boltzmann equation in the sense that the advection field is now a given known field
instead of a conformation coordinate.

For the sake of simplicity we consider the steady state 2D Fokker-Planck equation
related to a dilute enough suspension of rod-like particles whose orientation distribution
can be fully described by using the space x and orientation θ coordinates. Thus ψ(x,θ)
express the fraction of rods that at position x have an orientation θ. The associated balance
equation in absence of diffusion mechanics (the suspension is assumed dilute enough to
neglect rods interactions) reads:

v(x)·∇ψ+
∂

∂θ

(

θ̇ ψ
)

=0, (3.1)

with x∈Ωx, θ=Ωθ =[0,2π) and v(x) the velocity field that depends on the space coordi-
nate x.

It is important to note that the fact of neglecting diffusion mechanisms represents the
worst scenario from a numerical point of view because when diffusion effects are large
enough the integration of the Fokker-Planck equation does not require stabilization.

In the previous equation (3.1) the rotary velocity θ̇ comes from the Jeffery’s equation
particularized to 2D which implies pT =(cosθ,sinθ). As Jeffery’s equation (1.9) implies
a dependence of the rotary velocity on the local gradient of velocity and the last one
depends on the space coordinate x, we can finally write θ̇ = θ̇(x,θ). Thus depending on
the point x and the orientation θ the resulting rotary velocity can be positive θ̇ ≥ 0 or
negative θ̇ ≤ 0, and this fact, far to be irrelevant or transparent from a computational
point of view, determines the stabilization schema to be considered for integrating the
term involving the angular derivative of (θ̇ ψ).

Eq. (3.1) involves two major numerical difficulties, the first one related to its high-
dimensionality (the distribution ψ and the rotary velocity θ̇ depend on both the space and
angular coordinates x and θ respectively). The second, and probably the most important,
lies in the fact that the sign of θ̇ also depends on both coordinates (x and θ) determining
the advective stabilization to be considered.

The first issue, the one related to the dimensionality is not a major issue when we
proceed within a separated representation framework as it is the case when using the
proper generalized decomposition. Within this framework we can assume the standard
separated representation of the distribution function ψ(x,θ)

ψ(x,θ)≈
N

∑
i=1

Xi(x)·Θi(θ) (3.2)

involving N terms, each one consisting of a function of the space coordinate x and other
depending the angular coordinate θ, Xi and Θi respectively. All these functions are a
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priori unknown and they will be calculated by invoking the PGD constructor detailed
later.

Concerning the separated representation of θ̇(x,θ), being a fully known field, it can
be performed by applying a singular value decomposition (SVD) or in the higher mul-
tidimensional cases, its multidimensional counterpart, the so-called high-order singular
value decomposition (HOSVD). Thus, it results

θ̇(x,θ)≈
Nθ

∑
i=1

Fi(x) Gi(θ). (3.3)

The second issue, the one related to the stabilized discrete form of the advection op-
erator applying in the angular coordinate, is more delicate. As pointed out above the
rotary velocity θ̇ depends on x and then one could expect that depending on the point x

the advection term

A=
∂

∂θ

(

θ̇ ψ
)

(3.4)

should be integrated by using an upwinding stabilization depending on the sign of θ̇ at
that position. However, within the ”naive” implementation of the PGD constructor when
solving the angular problem all the space information appears in a global form (functions
depending on the x coordinate were integrated in Ωx) and then the same stabilization is
used everywhere. This issue is in fact very similar to the one just discussed in the pre-
vious section when we analyzed the ”naive” implementation of the PGD for discretizing
the Boltzmann advection operator.

3.1 Enhanced PGD-based discretization

As we just mentioned the rotary velocity θ̇(x,θ) is fully defined in Ωx×Ωθ and its sign
will determine the upwind stabilization of its discrete counterpart. For this purpose we
consider the decomposition implying the positive and negative parts of θ̇ according to:

{

θ̇+(x,θ)=max{θ̇(x,θ),0},

θ̇−(x,θ)=min{θ̇(x,θ),0},
(3.5)

and the associated separated representations

θ̇+(x,θ)≈
N+

θ

∑
i=1

F+
i (x) G+

i (θ), (3.6)

and

θ̇−(x,θ)≈
N−

θ

∑
i=1

F−
i (x) G−

i (θ), (3.7)

respectively.
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Eq. (3.1) is now rewritten by considering the decomposition θ̇= θ̇++ θ̇−:

v(x)·∇ψ+
∂

∂θ

(

θ̇+ ψ
)

+
∂

∂θ

(

θ̇− ψ
)

=0. (3.8)

By introducing the separated representations (3.6) and (3.7) into the Fokker-Planck
equation (3.8) and using appropriate upwinding stabilizations of both advective terms
involving the angular coordinate, according to the rotary velocity sign, stable solutions
can be calculated within the PGD framework.

We are illustrating one enrichment step of the algorithm. For the sake of notational
simplicity, and of course, without loss of generality, we assume that both N+

θ and N−
θ

consist of a unique term, that is:

θ̇+(x,θ)≈F+(x) G+(θ) (3.9)

and
θ̇−(x,θ)≈F−(x) G−(θ) (3.10)

implying

v(x)·∇ψ+
∂

∂θ

(

F+ G+ ψ
)

+
∂

∂θ

(

F− G− ψ
)

=0. (3.11)

The Fokker-Planck weak form reads:
∫

Ωx×Ωθ

ψ∗

(

v(x)·∇ψ+
∂

∂θ

(

F+ G+ ψ
)

+
∂

∂θ

(

F− G− ψ
)

)

dx dθ=0. (3.12)

At the enrichment step n (n<N), the distribution function ψn−1 consists of

ψn−1(x,θ)=
n−1

∑
i=1

Xi(x) Θi(θ), (3.13)

where functions Xi and Θi were calculated in the previous enrichment steps. Now, we
would like to compute ψn according to

ψn(x,θ)=
n−1

∑
i=1

Xi(x) Θi(θ)+Xn(x) Θn(θ)=ψn−1+Xn(x) Θn(θ), (3.14)

that implies the test function choice ψ∗

ψ∗=X∗ Θn+Xn Θ∗. (3.15)

Introducing the trial and test functions (3.14) and (3.15) into the problem weak form
(3.12) we obtain a nonlinear problem involving the unknown functions Xn and Θn. The
simplest linearization strategy consists of a fixed point alternated directions scheme that
proceeds by calculating Xn assuming Θn known, and then updating Θn from the just
calculated Xn. The process continues until reaching convergence, that is, the fixed point.
In what follows we explicit both steps.
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1. When assuming Θn known, Θ∗ vanishes and the weak form involving the un-
known function Xn writes:
∫

Ωx×Ωθ

X∗ Θn

(

v(x)·∇(Xn Θn)+
∂

∂θ

(

F+ G+ Xn Θn

)

+
∂

∂θ

(

F− G− Xn Θn

)

)

dx dθ

=−
∫

Ωx×Ωθ

X∗ Θn v(x)·∇

(

n−1

∑
i=1

Xi Θi

)

dx dθ

−
∫

Ωx×Ωθ

X∗ Θn

(

∂

∂θ

(

F+ G+

(

n−1

∑
i=1

Xi Θi

))

+
∂

∂θ

(

F− G−

(

n−1

∑
i=1

Xi Θi

)))

dx dθ.

(3.16)

Being all the functions depending in the angular coordinate θ known, Eq. (3.16) can
be integrated in Ωθ leading to:

∫

Ωx

X∗
(

α v(x)·∇Xn+β F+ Xn+γ F− Xn

)

dx=
∫

Ωx

X∗ f (x) dx, (3.17)

where

α=
∫

Ωθ

Θ2
n dθ, (3.18)

β=
∫

Ωθ

Θn
d

dθ

(

G+ Θn

)

dθ, (3.19)

γ=
∫

Ωθ

Θn
d

dθ

(

G− Θn

)

dθ, (3.20)

and f (x) comes from the integration in Ωθ of the right hand member of Eq. (3.16)
that only involves known functions.

The strong form related to Eq. (3.17) reads

α v(x)·∇Xn+β F+ Xn+γ F− Xn = f (x). (3.21)

Appropriate stabilized discretization (upwinding) techniques can be applied to both
the weak (3.17) and the strong (3.21) forms.

2. When assuming Xn known, X∗ vanishes and the weak form involving the unknown
function Θn writes:
∫

Ωx×Ωθ

Xn Θ∗

(

v(x)·∇(Xn Θn)+
∂

∂θ

(

F+ G+ Xn Θn

)

+
∂

∂θ

(

F− G− Xn Θn

)

)

dx dθ

=−
∫

Ωx×Ωθ

Xn Θ∗ v(x)·∇

(

n−1

∑
i=1

Xi Θi

)

dx dθ

−
∫

Ωx×Ωθ

Xn Θ∗

(

∂

∂θ

(

F+ G+

(

n−1

∑
i=1

Xi Θi

))

+
∂

∂θ

(

F− G−

(

n−1

∑
i=1

Xi Θi

)))

dx dθ.

(3.22)
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Being all the functions depending in the space coordinate x known, Eq. (3.22) can
be integrated in Ωx leading to:

∫

Ωθ

Θ∗

(

χ Θn+ξ
d

dθ

(

G+ Θn

)

+µ
d

dθ

(

G− Θn

)

)

dθ=
∫

Ωθ

Θ∗ g(θ) dθ, (3.23)

where

χ=
∫

Ωx

Xn v(x)·∇Xn dx, (3.24)

ξ=
∫

Ωx

X2
n F+ dx, (3.25)

µ=
∫

Ωx

X2
n F− dx, (3.26)

and g(θ) comes from the integration in Ωx of the right hand member of Eq. (3.22)
that only involves known functions.

The strong form related to Eq. (3.23) reads:

χ Θn+ξ
d

dθ

(

G+ Θn

)

+µ
d

dθ

(

G− Θn

)

= g(θ). (3.27)

Appropriate stabilized (upwinding) discretization techniques can be applied to both
the weak (3.23) and the strong (3.27) forms.

4 Numerical results

4.1 1D steady-state collision-free Boltzmann equation

First we consider the one-dimensional steady state Boltzmann equation

v
∂ f

∂x
=0 in Ωx×Ωv, (4.1)

with Ωx =(0,L) and Ωv=[−U,U], L=4 and U=4.
Dirichlet boundary conditions are enforced on Γl and Γr (Γl = (x = 0,y ∈ Ω+

v ) and
Γr =(x= L,v∈Ω−

v ), Ω+
v =[0,U] and Ω−

v =[−U,0])

{

f (x=0, v∈Ω+
v )= fl(v),

f (x= L, v∈Ω−
v )= fr(v).

(4.2)

Fig. 1 depicts function fl(v), a sort of Gaussian with compact support in Ω+
v . Bound-

ary condition on Γr was considered to be the symmetric of fl(v) with respect to the axis
v=0, that is fr(−|v|)= fl(v).
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Figure 1: Boundary condition enforced on Γl.

In this case since the Boltzmann equation reduces to a pure advection, the exact solu-
tion of the problem f ex(x,v) reads

f ex(x,v)=

{

fl(v), x∈Ωx, v∈Ω+
v ,

fr(v), x∈Ωx, v∈Ω−
v .

(4.3)

The solution is sought in the separated form

f (x,s,v+)≈
i=N

∑
i=1

Xi(x,s) Vi(v
+), (4.4)

and because the form of the exact solution (4.3), the optimal decomposition (separated
representation) consists of a single term, that is Nop =1.

As previously discussed, when considering the separated representation constructor,
the usual way to enforce Dirichlet boundary conditions consists of choosing some cou-
ples of separated functions regular enough in order to verify boundary conditions, and
add those terms to the first terms of the separated representation of f (x,s). This choice is
in principle arbitrary. Obviously if we consider

{

X1(x,s)=1,

V1(v
+)= fl(v),

(4.5)

the solution f 1(x,v)=X1(x,s) V1(v
+)= f ex(x,v) and then the enrichment process stops.

The separated representation consists of a single term and it is then optimal.
To avoid such a super convergence we consider an initial guess that verifies the

boundary condition without verifying the problem solution everywhere. To this purpose
we consider the first term given by:



















X1(x,s)=











1, x=0, s=1,

1, x= L, s=−1,

0, elsewhere,

V1(v
+)= fl(v).

(4.6)
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Figure 2: First space term of the separated representation X1(x,s). It allows enforcing the Dirichlet boundary
condition but it does not represent the exact solution everywhere.
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Figure 3: Space function X2(x,s) related to the second mode of the decomposition.
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Figure 4: Velocity function V2(v
+) related to the second mode of the decomposition.

The initial guess is depicted in Fig. 2. Because it only verifies the boundary conditions
but not the solution in Ωx×Ωv one expects that the algorithm generates other terms (only
one to ensure the most optimality).

Thus, from f 1(x,s,v+)=X1(x,s) V1(v
+) the separated representation constructor cal-

culate the second mode X2(x,s) V2(v+) leading to the enriched solution f 2(x,s,v+) =
f 1(x,s,v+)+X2(x,s) V2(v+). Figs. 3 and 4 depict both functions X2(x,s) and V2(v+) re-
spectively. As expected f 2(x,s,v+) agrees in minute the exact solution and then the en-
richment procedure stops and f 2(x,s,v+) constitutes the searched solution.
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4.2 1D transient collision-free Boltzmann equation

We consider now the transient solution of the collision-free Boltzmann equation

∂ f

∂t
+v

∂ f

∂x
=0 (4.7)

defined in Ωx×Ωv, Ωx =(0,L) and Ωv = [−U,U], U = 1 and L= 4. The main difference
is that now we must consider also the time coordinate defined in the time interval Ωt =
(0,25].

Two separated representations where analyzed, the one considering

f (x,t,s,v+)≈
i=N

∑
i=1

Xi(x,s) Ti(t) Vi(v
+) (4.8)

and the one involving space-time functions

f (x,t,s,v+)≈
i=Ñ

∑
i=1

Xi(x,t,s) Vi(v
+). (4.9)

In the last case space-time functions Xi(x,t,s) were calculated by using two different
integrations. The first considering again a space-time separated representation, that is

Xi(x,t,s)≈
i=N̂

∑
i=1

Ri(x,s) Si(t), (4.10)

leading to a sort of imbricated separated representation. The second possibility was the
incremental integration of functions Xi(x,t,s) by using an adequate solver for transient
advection equations (e.g. streamline upwind scheme).

No significant differences were noticed when applying any of the just considered
strategies. In what follows the scheme (4.8) is considered. First we consider the separated
representation (4.8) and consider the following initial and boundary conditions:







f (x∈Ωx, t=0, v∈Ωv)=0,

f (x=0, t,v∈Ω+
v )= fl(v),

v f (x= L, t,v∈Ω−
v )= fr(v),

(4.11)

where fl(v) is depicted in Fig. 5 (being fr(v) its symmetric image with respect to the axis
v=0).

Figs. 6, 7 and 8 depict the seven most important function Xi(x,s), Ti(t) and Vi(v
+), i=

1,··· ,7, respectively (without considering the functions used for enforcing the boundary
conditions), and Fig. 9 different snapshots of the solution f (x,t,v) at different times. The
computation of this rich solution (transient multidimensional) is obtained in few seconds
thanks to the separated representation features.
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Figure 5: Dirichlet boundary condition fl(v) considered in the transient Boltzmann problem.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

−2

−1

0

1

2

−0.2

0

0.2

0.4

0.6

0.8

1

xs

X
i(x

,s
)

Figure 6: Seven most significant functions Xi(x,s) involved in the Boltzmann solution separated representation.

0 5 10 15 20 25
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

T
i(t

)

Figure 7: Seven most significant functions Ti(t) involved in the Boltzmann solution separated representation.
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Figure 8: Seven most significant functions Vi(v
+) involved in the Boltzmann solution separated representation.
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Figure 9: Reconstructed distributions f (x,t,v) at times: (top-left) t=0, (top-right) t=2.5, (middle-left) t=5,
(middle-right) t=7.5, (bottom-left) t=10 and (bottom-right) t=20.

4.2.1 Convergence analysis

In the context of separated representations the solution accuracy is determined by the
space and time discretizations considered for describing the different functions involved
in the decomposition as well as by the number of terms considered in the finite sum N.
The effect of the mesh refinement was addressed in many of our former works. It was no-
ticed that the converged separated representation approaches asymptotically the equiva-
lent finite element solution that corresponds with a full tensor product of the approxima-
tion bases considered in each coordinate. Thus, the space (including the conformational
space) and the time discretization must be defined in order to represent the main solu-
tion features (e.g. localization, boundary layers, etc.), and when the discretization cannot
capture all the solution features appropriate adaptive strategies must be considered using
adequate error estimators [8].
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Figure 10: Convergence analysis: evolution of the equation residual (L2 norm) with the number of terms N
involved in the separated representation.

In what follows we are assuming a given mesh for the space, velocity and time and we
are calculating the evolution of the partial differential equation residual (using a L2 norm)
when increasing the number of terms involved in the finite sum decomposition N. In
Fig. 10 it can be noticed that even in the transient case here addressed, the consideration
of 20 terms reduces of 2 orders of magnitude the error (residual norm). It is important
to note that this error concerns the whole space domain, the entire time interval and the
whole velocity domain.

In that figure can be also noticed that adding much more terms has a limited im-
pact in the accuracy enhancement because separated representation constructors reach a
asymptotical behavior. As illustrated in [23] the best strategy for improving the solution
consists in refining the discretization as soon as the asymptotical evolution is reached.

Even when the solution involves many terms separated representations proceed or-
ders of magnitude faster than mesh-based discretization techniques as soon as the model
dimension increases, as discussed in [23]. It is important to recall that in the present
case we are solving a series of one-dimensional problems, that can be done extremely
fast. Lattice-Boltzmann — LB — techniques are in fact excellent alternatives, but here
we are precisely proposing techniques that could proceeds as fast as LB techniques while
keeping a fine representation of the conformation space as discussed in the next sec-
tion. Appropriate comparisons of the different available techniques constitutes a work in
progress and it remains out of the scope of this work.

4.3 2D steady-state collision-free Boltzmann equation

Finally we are considering the steady state collision-free Boltzmann problem in 2D

v·∇x f =0, (4.12)

where f (x,v), vT =(u,v) and xT =(x,y).
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Figure 11: Velocity distribution enforced in the inflow boundaries of Ωx×Ωv in the 2D Boltzmann problem.
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Figure 12: Function X1(x,y,r,s) for the 4 possible combinations of values of r and s.

Following the same ideas we consider the separated representation of the distribution
function f (x,v) according to:

f (x,v)≈
i=N

∑
i=1

Xi(x,y,r,s) Vi(u
+,v+), (4.13)

where r and s represent respectively the sign of u and v, and consequently r,s∈{−1,1}.

The domain Ωx is the circle of unit diameter centered at the origin of coordinates
O=(0,0). The velocity domain is the square Ωv=[−1,1]×[−1,1]. At the inflow boundary
of Ωx×Ωv the velocity distribution depicted in Fig. 11 is enforced with the appropriate
symmetries with respect to the axes u=0 and v=0 for defining it for the negative velocity
components, multiplied by a given function of space (arbitrarily chosen).
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Figure 13: Function V1(u
+,v+).
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Figure 14: Function X2(x,y,r,s) for the 4 possible combinations of values of r and s.

A first mode X1(x,y,r,s) V1(u
+,v+) was defined in order to fulfill the Dirichlet bound-

ary conditions, without taking care of its accuracy for representing the solution inside the
domain Ωx×Ωv. The functions involved in the first term of the finite sum (4.13), X1 and
V1 are depicted in Figs. 12 and 13 respectively.

Now the enrichment procedure continues by calculating new terms of the separated
representation until obtaining a solution accurate enough with respect to an appropri-
ate error estimator (in the present case the residual L2-norm). Fig. 14 shows the space
function involved in the second term of the separated representation X2(x,y,r,s). Finally
Fig. 15 depicts functions Vi(u

+,v+), i=2,··· ,5.

Again, the solution of the 4D Boltzmann problem is obtained in few seconds in a
laptop, thanks to the separated representation features. Its extension to 3D is straightfor-
ward as well as the introduction of appropriate collision terms.
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Figure 15: Functions Vi(u
+,v+): (top-left) i=2, (top-right) i=3, (bottom-left) i=4 and (bottom-right) i=5.

4.4 Fully advective Fokker-Planck operator

In this section we come back to the Fokker-Planck equation (3.1)

v(x)·∇ψ+
∂

∂θ

(

θ̇ ψ
)

=0, (4.14)

where we isolate the term involving the conformation coordinate θ in order to check the
stabilized integration strategy described in Section 3. For this purpose we consider

x

|x|

∂ψ

∂θ
= |x| cosθ (4.15)

in Ωx×Ωθ, with Ωx =[−1,0)∪(0,1] and Ωθ =[0,2π). The only condition applying in the
θ direction concerns the solution periodicity.

The solution is searched in the separated form:

ψ(x,θ)≈
N

∑
i=1

Xi(x) Θi(θ). (4.16)

By using the strategy described in Section 3 the solution was obtained in one enrich-
ment step, that is N = 1 in Eq. (4.16), in agreement with the exact solution that reads
ψex = x sinθ. The solution ψ(x,θ)=X1(x) Θ1(θ) is depicted in Fig. 16 and both functions
X1(x) and Θ1(θ) are depicted in Fig. 17.
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Figure 17: Functions X1(x) (left) and Θ1(θ) (right) involved in the separated representation of ψ(x,θ).

5 Conclusions

This paper addresses the challenging issue related to stabilization of discrete advective
operators encountered in general Boltzmann and Fokker-Planck models. In the Boltz-
mann model the advection field is a conformation coordinate whereas in Fokker-Planck
models the advection field consists of a field depending on the problem coordinates.

Thus the numerical treatment of both models is quite different. In this paper we
proposed, described and tested efficient routes for addressing the just described issues.
In the case of the Boltzmann models and inspired from the Lattice-Boltzmann practice
we defined a conformation space including the velocity magnitude and its sign. Thus,
the use of separated representation within the PGD framework allowed circumventing
the curse of dimensionality within a stabilized discrete formulation.

In the case of the Fokker-Planck equation and prior to applied the PGD separated rep-
resentation constructor we decomposed the advection field in order to guarantee stable
discretizations within the PDG framework.
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Some numerical experiments allowed to conclude on the pertinence of the proposed
approach.
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