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Investigation of Some Localization Criteria and Their Relevance to Prediction of Form-
ing Limit Diagrams 

Guillaume Altmeyer, Farid Abed-Meraim, Tudor Balan 

Laboratoire de Physique et Mécanique des Matériaux, FRE CNRS 3236, Arts et Métiers ParisTech – Metz Campus, 4 rue Augustin Fresnel, 
57 078, Metz / France, farid.abed-meraim@ensam.eu 

Because prevention of forming defects has become one of the major industrial challenges, various experimental and theoretical ap-
proaches have been developed to predict sheet metal formability. The main theoretical models can be summarized as: the maximum force 
principle, according to which necking is associated with the maximum load in a uniaxial tensile test; Marciniak–Kuczyński (M–K) two-zone 
analysis, based on an initial thickness defect in the sheet; bifurcation theory, predicting diffuse necking with general bifurcation criterion or 
localized modes corresponding to loss of ellipticity; and more recently, linear stability analysis by means of linearization of perturbed equilib-
rium equations. Considering this variety of models, a careful comparison of numerical Forming Limit Diagrams (FLDs) along with in-depth 
understanding of their theoretical foundations is required to help select relevant localization criteria. In this paper, the theoretical bases of 
M–K and Rice’s criteria are first reviewed, which are then applied to steels modeled by elasto-plastic constitutive equations coupled with 
damage. It is shown that the FLDs obtained with the M–K model tend to those yielded by Rice’s criterion in the limit of vanishing initial 
imperfections. 

Keywords: Sheet metal forming, Necking, Strain localization, Forming limit diagrams, Elasto–plasticity, Damage, Rice’s bifurcation criterion, 
Marciniak–Kuczyński criterion 

Introduction 

In the literature dealing with material instabilities, many 
instability criteria have been developed and some of them 
have been extensively applied to sheet metals in order to 
investigate their formability limits. An exhaustive list of 
those criteria is difficult to be given, considering the multi-
tude of variants derived from some approaches. A short 
review reveals, however, that those criteria could be classi-
fied into at least four distinct categories, depending on 
their fundamental basis as well as their theoretical or phys-
ical background. Early instability criteria were based on 
the Maximum Force Principle, originated by Considère [1] 
and its two-dimensional extension by Swift [2] for appli-
cation to sheet metals. These criteria, in their original form, 
were known to predict diffuse necking. Later these Maxi-
mum-Force-based criteria were extended by Hora et al. [3] 
and subsequently by Mattiasson et al. [4] in order to pre-
dict localized necking, and some enhanced versions were 
developed to take into account some effects such as thick-
ness effect… Concurrently, Hill’s zero-extension criterion 
[5] was developed to predict localized necking on the left-
hand side of the FLD. Another approach, postulating a pre-
existing defect in the material sheet, was proposed by 
Marciniak and Kuczyński [6]. In its original version, M–K 
model can be regarded, in a sense, as a complementary 
approach to Hill’s zero-extension criterion, which is only 
applicable to left-hand side of FLDs as no zero extension 
direction exists for positive biaxial stretching. However, 
since localized necking in biaxial stretching is observed in 
practice, a pre-existing defect has to be introduced in the 
M–K model to capture this effect, which may provide 
some justification to this imperfection theory. Drucker’s 
[7] and Hill’s [8] general bifurcation theory represents 
another class of approach for diffuse necking. Belonging 
to the same class, limit point bifurcation appeared later 
(see, e.g., Valanis [9]), and it has been shown that for asso-
ciative plastic materials, limit point bifurcation coincides 

with general bifurcation. For localized necking, Rudnicki 
and Rice’s bifurcation criterion [10], based on loss of 
ellipticity of the acoustic tensor, was established. In the 
same way, some authors (see Bigoni and Hueckel [11]) 
suggested the use of loss of strong ellipticity, which was 
shown to coincide with Rice’s criterion for associative 
elasto–plastic models. More recently, stability analysis 
approaches based on linearized perturbation techniques 
have been developed (Dudzinski and Molinari [12]) and 
applied in the framework of soil mechanics as well as 
sheet metal formability. 

It is worth noting that, while M–K analysis has been 
widely used in the literature, few applications of Rice’s 
ellipticity loss theory, mostly restricted to plane-stress 
assumptions and simple behavior models, have been at-
tempted in sheet metal forming for quantifying metals in 
terms of formability. It should be noted, however, that 
some recent contributions (Franz et al. [13], Haddag et al. 
[14]) have coupled Rice’s bifurcation analysis with ad-
vanced physically based behavior models. In this paper, 
the theoretical formulations of these criteria are reviewed 
in order to demonstrate some similarities in their respec-
tive bases. The application of these localization criteria to 
steels modeled by elasto–plastic laws coupled with dam-
age allows us to determine the associated FLDs; the role 
of the initial imperfection size in M–K analysis is espe-
cially emphasized. 

Constitutive Modeling 

Elasto–Plastic Model. The adopted model is based on a 
phenomenological approach aiming to reproduce the be-
havior of a large class of metallic materials, including 
steels. This model is able to account for the initial anisot-
ropy of the sheet encountered in deep-drawing operations, 
but it is restricted here to cold deformation. A hypo-elastic 
law describes the evolution of the Cauchy stress σ : 
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: e=σ C ε  (1) 

where C  is the elasticity modulus and eε  the elastic 
strain rate, defined by an additive decomposition of the 
total strain rate ε  into its elastic and plastic parts. The 
plastic strain rate evolution is given by an associative flow 
rule: 

p Fλ λ∂= =
∂

ε V
σ

           (2) 

where λ  is the plastic multiplier and V  the flow direc-
tion, normal to the yield surface defined by F . The yield 
criterion can then be written under the Kuhn–Tucker form: 

0       0       0FF Y λ λσ= =− ≤ ≥   (3) 

where σ  is here the Hill’48 anisotropic yield function and 
Y  denotes the current size of the yield surface. The evolu-
tion of Y  is related to that of isotropic hardening R : 

0= +Y Y R     (4) 

where 0Y  is the initial yield stress, while the evolution of 
the isotropic hardening is given by a saturating Voce, re-
spectively, a non-saturating Swift law such as: 

λ= 
RR H  (5) 

and: 
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where RC  and satR  are the Voce material parameters, 
while n  and k  are the Swift parameters. RH  is called 
isotropic hardening modulus. Combining these equations 
with the consistency condition, one can obtain the relation 
between the stress and strain rates during elastic–plastic 
loading: 

( ) ( ): :
: :

: :α
 ⊗

−  + 
= =  

RH
C V V C

C
V C V

σ ε εL (7) 

where 1α =  for plastic loading and zero otherwise. For 
Rice localization criterion and associative elasto-plastic 
laws, material instability is predicted during softening 
regime, an effect that can be introduced by coupling the 
constitutive equations with damage. 

Elasto–Plastic Model Coupled with Damage. During 
large deformations that occur in deep-drawing operations, 
a deterioration of material properties may take place. This 

deterioration is related to the evolution of micro-defects. 
Adopting the continuum damage mechanics, the deteriora-
tion of the material properties is modeled by a damage 
variable d  related to the surface density of micro-defects. 
The evolution of d  is given by a Lemaitre-type law: 
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where eY  is the strain energy density release rate and β , 

dS , ds , eiY  are material parameters. By adopting the 
strain equivalence principle, Equation (1) becomes: 

( ) ( )1 :
1

p dd
d

= − − −
−

σ C ε ε σ


   (9) 

and, due to coupling with damage, the relation between the 
stress and strain rates can be rewritten as := dσ εL , 
with: 

( ) ( ) ( ) ( )(1 ) : : :
1 : : (1 )α=

− ⊗ + ⊗
− − + −

d
d

R

d H
d d H

C V V C σ V C
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is the tangent modulus affected by damage. 

Localization Criteria 

Marciniak–Kuczyński Criterion. M–K criterion is 
based on the semi empirical observation according to 
which strain localization occurs at an imperfection of the 
structure. In this model, a heterogeneity with degraded 
properties is initially introduced into the metal sheet; al-
though different geometrical or material heterogeneities 
could be used, the defect is usually introduced in the form 
of a band of reduced thickness, as shown in Figure 1. 

Figure 1. Metal sheet with band of reduced thickness used in M–K 
model. 

The ratio between the initial thickness of the defect area 
and that of the safe one is denoted by 0f . During loading, 
components of strain or stress tensors are applied on the 
unaffected area. The mechanical state of this area can then 
be computed using Eqs. (1)-(10). Compatibility of defor-
mations, force equilibrium conditions and evolution of the 
current defect size f  are then used to determine the me-
chanical state inside the band: 
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where superscript B  refers to a variable in the band. Strain 
localization is predicted when the strain or the strain rate 
becomes concentrated in the band, i.e. is much larger in 
the affected area. In practice, once the strain or strain rate 
tensors are known in both zones, localization is predicted 
if the ratio between two strain-related variables, for exam-
ple the equivalent strain rates Bε  and ε , exceeds a user 
defined threshold M KS − :

ε
ε −>




B

M KS (12) 

Hutchinson and Neale [15] observed that the original 
M–K model tends to overestimate the formability in the 
left side of the FLD. Hence, they proposed to take into 
account the influence of the orientation of the defect band, 
given by the normal n , to improve the formability predic-
tions. 

Rice Criterion. In this approach a solid subjected to a 
given loading path is considered; localization is viewed as 
a rapid evolution from a homogeneous state of the velocity 
gradient to a heterogeneous state exhibiting discontinuity 
planes for the velocity gradient. Two discontinuity planes 
of normal n  define a localization band. Localization here 
also means a bifurcation of the governing equations asso-
ciated with a discontinuous compatible strain rate. 

Let us consider the velocity gradient fields inside and 
outside a possible localization band, denoted BL  and L
respectively. The difference between L  and BL  is then: 

[ ] B= −L L L (13) 

A discontinuity of the velocity gradient across the local-
ization band leads to the existence of a non-zero vector c , 
representing the relative velocities between the areas situ-
ated at each side of the discontinuity planes, such that 
Hadamard’s compatibility condition is satisfied: 

= + ⊗BL L c n (14) 

The jump in the velocity gradient is then: 

[ ] = ⊗L c n (15) 

which can also be written: 

[ ]⋅ = L n c (16) 

A second condition, the continuity of the force across 
the planes defining the localization band, has to be verified. 
Written in its rate form and with the first Piola–Kirchhoff 
stress tensor, this condition leads to: 

  =  ⋅
 nΠ 0 (17) 

By introducing the nominal stress rate tensor N  (with 
: )d=N LL  as the transpose of first Piola–Kirchhoff 

stress rate tensor and using Equation (17), one can obtain: 

[ ]:d⋅ =n L 0L (18) 

It is usually admitted that, at the onset of localization, 
the tangent moduli are the same inside and outside the 
localization band: 

=B
d dL L (19) 

Taking into account the equality of the tangent moduli at 
the onset of localization (Eq. (19)) and the jump of the 
velocity gradient (Eq. (15)), the continuity of the force 
across the planes defining the localization band Eqs. (17)-
(19) leads to: 

[ ]( ) ( ):⋅ = ⋅ ⋅ ⋅ =d dn L n n c 0L L (20) 

As previously mentioned, localization occurs for non-
zero values of c . Non-trivial solution of system (20) is 
then obtained if: 

( )det 0⋅ ⋅ =dn nL (21) 

In practice, the numerical prediction of localization is 
carried out by searching for the first value of the tangent 
modulus leading to a singularity of the acoustic tensor 
⋅ ⋅dn nL  during loading of the metal sheet. For each 

loading increment, the determinant of the acoustic tensor 
is computed for different orientations of the normal to the 
band. As long as the determinant of the acoustic tensor 
remains positive for all orientations of the normal to the 
plane of the band, no localization is predicted. 

Application of Marciniak–Kuczyński and Rice Criteria 
to Forming Limit Diagrams 

The M–K and Rice localization criteria were applied to 
predict the FLDs for steel sheets. The material behavior is 
described with the models introduced in the first section of 
the paper. The material parameters are given in Table 1. 
The hardening parameters corresponding to mild steel are 
combined with two sets of fictitious damage parameters – 
also corresponding, roughly, to the behavior of mild steels. 
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Table 1. Two material parameter sets for Voce saturating isotropic 
hardening law coupled with Lemaitre isotropic damage. 

set RC  satR
(MPa) 

0Y
(MPa) 

β  dS  ds eiY
(MPa) 

1 10 550 350 12 20 0.01 0 
2 10 550 350 10 10 1 0.5 

Figures 2 and 3 show the FLDs corresponding to the 
two sets of parameters, as predicted by the Rice and Mar-
ciniak–Kuczyński criteria – for different values of initial 
heterogeneity for the latter criterion. 

Figure 2. FLDs of steel 1 obtained with Rice criterion and with M–
K model for various values of initial defect size. 

Figure 3. FLDs of steel 2 obtained with Rice criterion and with M–
K model for various values of initial defect size. 

According to these results, the M–K predictions con-
verge towards the FLDs predicted by Rice’s criterion when 
the size of the initial defect tends to vanish. Moreover, 
when the material response exhibits no softening (here, no 
damage), the determinant of the acoustic tensor is always 
positive, thus no localization is detected by Rice’s criterion. 
In these conditions, no realistic FLD predictions are ob-
tained by the M–K criterion either, when the initial defect 
value is kept reasonably small. These numerical findings 
suggest that a theoretical link may exist between these two 
criteria (one being a limit case of the other); this needs 
however to be mathematically demonstrated. Also, the 
robustness of the numerical simulation needs further atten-
tion, as the M–K simulations exhibit convergence difficul-
ties for loading paths close to plane strain, as soon as the 
value of the initial defect becomes very small. 

Conclusions 

Many models and criteria have been developed to pre-
dict the necking and localization phenomena; however, the 
theoretical or numerical relations between them have been 
seldom investigated. Starting from the observation of 
similarities in their mathematical formulations, the FLD 
predictions using the criteria of Rice and Marciniak–
Kuczyński were compared, with material parameters cor-
responding to two (fictitious) mild steels. The numerical 
results show that the M–K predictions tend to the Rice 
predictions when the initial defect becomes very small. 

Based on these promising numerical results, future work 
will concern rewriting these two criteria in a common 
mathematical framework, with the aim of deriving possi-
ble theoretical relations between the two models. 
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