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a b s t r a c t

The aim of this paper is to investigate ductile failure under shear-dominated loadings using a model of
plastic porous solids incorporating void shape effects. We use the model proposed by (Madou and
Leblond, 2012a,b; Madou et al., 2013; Madou and Leblond, 2013) to study the fracture of butterfly
specimens subjected to combined tension and shear. This model is able to reproduce, for various loading
conditions, the macroscopic softening behavior and the location of cracks observed in experiments
performed by Dunand and Mohr (2011a,b). Void shape effects appear to have a very significant influence
on ductile damage at low stress triaxiality.

1. Introduction

Ductile fracture is the most common mode of failure of metals
and alloys at room and high temperatures. This type of fracture
arises from the successive nucleation, growth and coalescence of
voids. Although its understanding and modeling have known
tremendous progress during the last fifty years (see Benzerga and
Leblond (2010) and Pineau et al. (2016) for recent reviews of the
topic), many open questions still remain. Among the remaining
challenges, the prediction of ductile fracture under conditions of
low stress triaxiality (ratio of the mean and von Mises equivalent
stresses) has recently been the focus of extensive studies.

From the experimental point of view, several recent studies have
investigated the initiation of ductile fracture under combined ten-
sile and shear loading (e.g. Mohr and Henn (2007); Barsoum and
Faleskog (2007a); Dunand and Mohr (2011a,b); Graham et al.
(2012); Haltom et al. (2013); Ghahremaninezhad and Ravi-
Chandar (2013); Faleskog and Barsoum (2013); Papasidero et al.
(2015)). It is worth noting that all these studies confirm the absence

of significant void growth away from the final fracture surface
under conditions of dominant shear. It may thus be speculated that
macroscopic softening due to important changes of the shape of the
voids is responsible for ductile fracture in shear experiments.

From the numerical point of view, important efforts have also
been dedicated to the study of ductile fracture in finite element
micromechanical simulations of elementary porous cells subjected
to shear-dominated loadings (Barsoum and Faleskog, 2007b;
Leblond and Mottet, 2008; Tvergaard, 2009; Tvergaard and
Nielsen, 2010; Scheyvaerts et al., 2011; Nielsen et al., 2012;
Tvergaard, 2012, 2015; Dunand and Mohr, 2014). These studies
have shown that under conditions of dominant shear, voids rotate,
flatten and close up in a mechanism of “mesoscopic strain locali-
zation” between voids,1 leading to macroscopic softening. When
the triaxiality increases, a continuous transition is observed be-
tween this mechanism and the necking of the ligaments between
neighboring voids leading to standard coalescence, as observed
numerically in the work of Koplik and Needleman (1988), followed
by many others.
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1 The adjective “mesoscopic” means that localization occurs neither at the
microscopic scale nor at the macroscopic scale of the void spacing, but at the in-
termediate scale of the void diameter.
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From the theoretical point of view, a lot of progress has been
made on the modeling of ductile fracture since the seminal works
of McClintock (1968) and Rice and Tracey (1969), who studied the
growth of a single cavity in an infinite plastic matrix and evidenced,
for the first time, the essential impact of triaxiality upon the void
growth rate. Their work laid the foundations of the modeling of
void growth, and was followed by the major contribution of Gurson
(1977), who combined homogenization and limit-analysis of a
spherical finite cell containing a spherical void to derive a complete
and consistentmodel of plastic porousmaterials. Due to its intrinsic
limitation to spherical voids, Gurson's model cannot predict any
softening for a zero triaxiality, because the softening arises in this
model only from the increase of the porosity which is nil under
such conditions. Several classes of remedies have therefore been
proposed in order to account for the softening observed under
shear-dominated loadings:

(1) The first class is based on a heuristic modification of the
evolution equation of the porosity (Nahshon and
Hutchinson, 2008; Xue, 2008). This equation is modified by
including an extra term that does not vanish when the
triaxiality is zero; this term thus generates some softening in
shear. With this modification, the porosity is no longer
identical to the true volume fraction of the voids, but can be
interpreted as a heuristic damage parameter. Due to its very
simple form, the model has been widely used and has
notably permitted to successfully reproduce both micro-
mechanical simulations (Tvergaard and Nielsen, 2010) and
experiments (Dunand and Mohr, 2011a; Xue et al., 2013)
under conditions of dominant shear.

(2) The second class is based on a more micromechanical
modeling of void shape effects responsible for macroscopic
softening at low triaxiality. Two mathematical frameworks
have been developed to derive constitutive models:
� Models based on limit-analysis of elementary cells: Com-
bination of limit-analysis and Hill-Mandel homogeniza-
tion of some volume element, as first proposed by Gurson
himself, permits to effectively operate the scale transi-
tion, although it only considers rigid-ideal-plastic mate-
rials. In this context, Gologanu et al. (1993, 1994, 1997)
extended Gurson's model to spheroidal cavities, using
incompressible velocity fields satisfying conditions of
homogeneous boundary strain rate on all spheroids
confocal with the void.2 Their model has permitted to
reproduce micromechanical simulations involving
axisymmetric loadings under conditions of low triaxiality
(Gologanu, 1997; Pardoen and Hutchinson, 2000).
Recently, a generalization has been proposed in order to
account for general ellipsoidal voids (Madou and Leblond,
2012a, 2013,b; Madou et al., 2013), using a family of
incompressible velocity fields satisfying conditions of
homogenous strain rate on an arbitrary family of confocal
ellipsoids, discovered by Leblond and Gologanu (2008).
This model has permitted to accurately reproduce
micromechanical simulations of Tvergaard and co-
workers (Tvergaard, 2009, 2012; Nielsen et al., 2012,
2015) involving shear-dominated loadings (Morin et al.,
2016).

� Models based on nonlinear homogenization: Another
framework, based on nonlinear homogenization, has been
developed to derive constitutive equations of porous

materials from rigorous bounds for nonlinear composites
(Ponte Casta~neda, 1991; Willis, 1991; Michel and Suquet,
1992). The models derived using the so-called “varia-
tional” approach (Ponte Casta~neda and Zaidman, 1994;
Kailasam and Ponte Casta~neda, 1998) naturally account
for void shape effects but severely overestimate the limit-
load for predominantly hydrostatic loadings. Later, Danas
and Ponte Casta~neda (2009) developed a model based on
more refined bounds that has been applied to structures
subjected to shear-dominated loadings (Danas and Aravas,
2012).

The aim of this paper is to investigate ductile failure under shear-
dominated loadings, using a micromechanical model of plastic
porous solids incorporating void shape effects. The model selected is
that developed by (Madou and Leblond, 2012a, 2013,b; Madou et al.,
2013). This model is applied to the numerical simulation of Dunand
and Mohr (2011a,b)'s experiments of ductile failure of “butterfly”
specimens subjected to combined tension and shear.

The paper is organized as follows:

� Section 2 briefly presents Dunand and Mohr (2011a,b)'s
experiments.

� Section 3 recapitulates theMadou-Leblondmodel. The primitive
form of the model (Madou and Leblond, 2012a, 2013,b; Madou
et al., 2013) is completed with heuristic extensions so as to
include coalescence of voids and strain hardening, following
Morin et al. (2016).

� In Section 4 we investigate the predictions of the Madou-
Leblond model, as applied to the experiments presented in
Section 2. The force-displacement curves and the location of the
cracks are notably investigated.

2. Experimental procedures

We recall in this section the basic setup of the experiments
performed by Dunand and Mohr (2011b, a) that we will try to
reproduce with an advanced model of ductile fracture.

2.1. Bi-axial experiments

The bi-axial fracture experiments are performed with a dual
actuator system (see Fig. 1a) that permits to apply a combination of
normal and transverse loads on the edge of a “butterfly specimen”.
The specimen, represented in Fig. 1b, includes a gage section of
reduced thickness that has been designed in such a way that frac-
ture is prone to initiate at its center. The ratio of the vertical force FV
and the horizontal force FH applied is characterized by the bi-axial
loading angle b defined by

tanb ¼ FV
FH

; (1)

where b ¼ 0+ corresponds to pure shear and b ¼ 90+ to tension.
Four different loading conditions are investigated: b ¼ 0+ (pure
shear), b ¼ 25+ (shear-dominated loading), b ¼ 63+ (tension-
dominated loading) and b ¼ 90+ (tension). The experiments are
performed under force control to enforce the desired value of the
loading angle b.

2.2. Material

The experiments are performed on a TRIP780 steel. This mate-
rial features a complex multiphase microstructure composed of

2 In a variant, Garajeu et al. (2000) considered a velocity field orthogonal to all
such spheroids.



ferrite, bainite and martensite. It also contains about 6% of retained
austenite which may undergo phase transformation upon me-
chanical loading. However, the phase transformation is expected to
be complete after applying a few percent of strain. Given that the
fracture strains are one order of magnitude higher, we do not
expect any effect of the transformation on the governing defor-
mation process leading to ductile fracture. The elasto-plastic
behavior of this 1.4 mm thick mildly-anisotropic sheet material
(Lankford ratios ranging from 0.82 to 1.01) has been characterized
in detail by Mohr et al. (2010).

2.3. Quantities investigated

For each loading case, two force-displacement curves are
recorded: (i) the horizontal force versus the horizontal displace-
ment and (ii) the vertical force versus the vertical displacement.
Furthermore, photographs of the fractured (or quasi-fractured)
specimens are taken in order to determine the locus of initiation
of the crack (Dunand and Mohr, 2011b).

3. The Madou-Leblond model for plastic porous materials
including void shape effects

In this section, we briefly recall the main equations defining the
Madou-Leblond model along with its extension by Morin et al.
(2016). The reader is referred to Madou and Leblond (2012a,b,
2013) and Madou et al. (2013) for a detailed description of all
model developments.

3.1. Primitive form

3.1.1. Preliminaries
We consider here the Madou-Leblond model (denoted ML

hereafter) in its primitive form. This model applies to aligned
ellipsoidal voids of identical shape and orientation. The macro-
scopic criterion is obtained from some approximate limit-analysis

of an ellipsoidal cell U whose constitutive material obeys the
isotropic von Mises criterion, containing a confocal ellipsoidal
void u of semi-axes a> b> c oriented along the unit vectors ex, ey,
ez. The void's surface is characterized by the quadratic form P
defined by

P ðuÞ≡ðu$exÞ
2

a2
þ
�
u$ey

�2
b2

þ ðu$ezÞ2
c2

: (2)

(Note that the equation of this surface is P ðOMÞ ¼ 1 where M
denotes the current point and O the center of the void). The matrix
P≡ðPijÞ of the quadratic form P is expressed in the fixed frame (e1,
e2, e3) of the observer. Since its diagonalization provides the semi-
axes and the orientation of the void, it may be used to completely
define the ellipsoidal void.3 Finally, the porosity (void volume
fraction) is denoted f.

3.1.2. Macroscopic yield criterion
The ML macroscopic yield criterion reads

Fðs;P; f ; s0Þ ¼
Q ðsÞ
s20

þ 2ð1þ gÞðf þ gÞcosh
�
L ðsÞ
s0

�
� ð1þ gÞ2

� ðf þ gÞ2

� 0:

(3)

In this equation:

� Q ðsÞ is a quadratic form of the components of the Cauchy stress
tensor s defined by

Fig. 1. The experimental setup (after Dunand and Mohr (2011a)).

3 The model does not contain any characteristic lengthscale; what matters is only
the ratios of two semi-axes over the third one, not their absolute value. Thus, one
semi-axis may conventionally be set to unity initially.



Q ðsÞ ¼ s : Q : s (4)

where Q is a fourth-order tensor;

� L ðsÞ is a linear form of the diagonal components of s in the
basis (ex, ey, ez) defined by

L ðsÞ ¼ kH : s (5)

where k is a scalar and H a second-order tensor of unit trace;

� g is the second porosity, whose value is tied to the first porosity
and the shape of the void. This parameter, nil in the case of
prolate voids and non-zero in the case of oblate voids, reduces
to the classical “crack density” in the case of penny-shape
cracks;

� s0 is the yield stress of the soundmatrix, assumed to be constant
in the primitive version of the model considered here.

The expressions of all model parameters are given inMadou and
Leblond (2012b).

3.1.3. Macroscopic flow rule
Since the normality of the plastic flow rule is preserved during

the homogenization procedure (Gurson, 1977), this rule necessarily
reads

Dp ¼ _l

"
2
Q : s

s20
þ 2
s0

ð1þ gÞðf þ gÞkH sinh
�
kH : s

s0

�#
;

_l

�¼ 0 if Fðs;P; f ; s0Þ<0
� 0 if Fðs;P; f ;s0Þ ¼ 0

(6)

where Dp denotes the Eulerian plastic strain rate and _l the plastic
multiplier. Note that in this equation the conditions _l � 0, F ¼ 0
defining the second possibility for the plastic multiplier implicitly
cover two distinct cases: (i) elastic unloading, for which _l ¼ 0 and
_F<0 (F becomes negative immediately after the instant consid-
ered, thus ruling out plasticity); (ii) plastic loading, for which _l � 0
and _F ¼ 0 (plasticity implies sustained satisfaction of the yield
criterion F ¼ 0).

3.1.4. Evolution equations of the internal parameters
The evolution equation of the porosity is classically deduced

from the approximate incompressibility of the matrix:

_f ¼ ð1� f ÞtrðDpÞ: (7)

The evolution equation of the matrix P characterizing the shape
and orientation of the ellipsoidal voids is given by

_P ¼ �P$
�
Dv þUv�� �

Dv þUv�T$P (8)

whereDv andUv denote the strain- and rotation-rate tensors of the
void, respectively. These rates are given by:�
Dv ¼ L : Dp

Uv ¼ Uþ R : Dp:
(9)

In these expressions,U is the rotation-rate tensor of thematerial
(antisymmetric part of the velocity gradient) and L and R fourth-

order “localization tensors” (see Madou et al. (2013) for the
detailed expressions of their components).

3.2. Extensions

Following Morin et al. (2016), we complete the ML model with
some heuristic extensions in order to make it applicable to “real”
materials and situations.

3.2.1. Tvergaard's parameter
First we introduce the so-called “Tvergaard parameter” in the

yield criterion (3) and the flow rule (6), in order to account for more
realistic shapes of the elementary cell (Tvergaard, 1981): this is
done by replacing the term ðf þ gÞ by qðf þ gÞ, where q is a heuristic
factor slightly larger than unity.

In the case of spheroidal voids, Gologanu (1997) considered,
from various physical arguments, Tvergaard's parameter q as a
function of the void shape. Following Morin et al. (2016), we
consider that a general ellipsoidal void of semi-axes a, b, c (a> b> c)
is “intermediate” between a prolate spheroidal void of semi-axes a,
c, c and an oblate one of semi-axes a, a, c. The proposed expression
of q is then an interpolation between Gologanu (1997)’s expres-
sions for the prolate and oblate cases:

q ¼ ð1� kÞqprol þ kqobl ;

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � c2

a2 � c2

s
;

8>>>><
>>>>:

qprol ¼ 1þ


qsph � 1

�" 2a=c

1þ ða=cÞ2

#3=2

qobl ¼ 1þ


qsph � 1

�" 2a=c

1þ ða=cÞ2

#

(10)

where qsph represents Tvergaard (1981)'s original value of q for
spherical voids, and qprol and qobl those of Gologanu (1997) for
prolate and oblate voids.

3.2.2. Coalescence
In order to account for coalescence of voids, we extend

Tvergaard and Needleman (1984)’s classical modification of Gurson
(1977)'s model, consisting in replacing the true porosity f by some
larger fictitious one f � once some “critical value” fc has been
reached. Since in the ML model the parameter governing softening
is no longer f but f þ g, it is natural to apply the modification to this
parameter and thus replace it by

ðf þgÞ� ¼
�

f þg if f þ g� ðf þgÞc
ðf þgÞcþ d

�ðf þgÞ� ðf þ gÞc



if f þg> ðf þgÞc
(11)

where ðf þ gÞc and d>1 are material parameters.

3.2.3. Strain hardening
Finally, strain hardening is introduced following Gurson (1977)'s

approach. The constant yield limit s0 in the criterion (3) is thus
replaced by some “average yield stress” s given by:

s≡sðεÞ (12)

where sðεÞ is the function which provides the local yield limit as a
function of the local cumulated plastic strain ε, and ε repre-
sents some “average equivalent strain” in the sound matrix. The



evolution of ε is governed by the following equation:

ð1� f Þsε_ ¼ s : Dp (13)

which expresses the heuristic assumption that the plastic dissipa-
tion in the heterogeneous porous material, s : Dp, is equal to that in
a fictitious “equivalent” homogeneous material with equivalent
strain ε and yield stress s, ð1� f Þsε_.

3.2.4. Final form of the yield criterion and flow rule
With the above modifications in place, the final form of the ML

yield criterion and its flow rule reads:

Fðs;P; f ; sÞ ¼ Q ðsÞ
s2

þ 2qð1þ gÞðf þ gÞ�cosh
�
L ðsÞ
s

�
� ð1þ gÞ2

� q2ðf þ gÞ�2

� 0;

(14)

Dp ¼ _l

�
2
Q : s

s2
þ 2

s
qð1þ gÞðf þ gÞ�kH sinh

�
kH : s

s

��
;

_l

�¼ 0 if Fðs;P; f ;sÞ<0
� 0 if Fðs;P; f ; sÞ ¼ 0:

(15)

Note again that the second possibility for _l here covers both
elastic unloading and plastic loading.

3.3. Damage parameter definition for post-processing

In the ML model, damage in the porous material results from a
combination of porosity and void shape effects (through the
second porosity). It is interesting to define a single damage
parameter d, tied to both f and g, characterizing the gradual
degradation of the material. This parameter does not play any role
in the constitutive equations, but may be examined in a post-
treatment of the results to evaluate the location and importance
of damage in the structure.

Suppose that the material is entirely ruined (s ¼ 0); one then
obtains from the criterion (14):

2qð1þ gÞðf þ gÞ� � ð1þ gÞ2 � q2ðf þ gÞ�2

¼ ��
1þ g � qðf þ gÞ�
2 ¼ 0: (16)

It follows that qðf þ gÞ� ¼ 1þ g. The damage parameter d can
thus be defined by the formula:

d ¼ qðf þ gÞ�
1þ g

; (17)

the values d ¼ 0 and d ¼ 1 corresponding to absence of damage and
total damage, respectively.

4. Comparison between experiments and numerical results

4.1. Description of the numerical simulations

4.1.1. Mesh and boundary conditions
We consider one half of the butterfly specimen, the upper and

bottom edges of which are subjected to uniform displacements ux
and uy, respectively (see Fig. 2). The displacements are adjusted so
as to enforce the desired loading angle b defined by equation (1).
The mesh is composed of 71,986 elements and 82,479 nodes; we
use selectively subintegrated 8-node trilinear brick and 6-node

trilinear wedge elements well suited to quasi-incompressible
plasticity. The use of Gurson-type models is known to raise the
issue of mesh dependency when softening occurs (see e.g.
Tvergaard and Needleman (1984); Besson et al. (2001)). In the
absence of a regularization of some sort (such as use of a nonlocal
evolution equation of the porosity (Enakoutsa et al., 2007) or a
second-gradient model (Gologanu et al., 1997)), a classical heuristic
“solution” to the problem is to ascribe a value of the order of the
void spacing to themesh size (see e.g. Bergheau et al. (2014)). In the
present case, in the gage section of the specimen, the mesh
considered is composed of 210 elements in the direction x, 60 el-
ements in the direction y and 8 elements in the direction z,
respectively (see Fig. 2). This discretization is identical to that used
by Dunand and Mohr (2011a) in the case of Nahshon and
Hutchinson (2008)'s model. The simulations are performed with
the commercial finite element code ABAQUS, using a UMAT sub-
routine based on the numerical implementation of the ML model
developed by Morin et al. (2016) and made freely available on the
Web (see Leblond (2015)).

4.1.2. Parameters used in the ML model
For the elastic properties we consider the values given by

Dunand and Mohr (2011b) (see Table 1). The hardening law
considered is also that calibrated by Dunand and Mohr (2011b) and
is given by the following modified Swift law:

sðεÞ ¼ Kðεþ ε0Þn (18)

where the values of the parameters K, ε0 and n are given in Table 1.
Themore tricky part concerns the parameters related to damage

(initial porosity, initial shape of the voids and coalescence param-
eters). According to Uthaisangsuk et al. (2009), there are two
populations of cavities in a TRIP600 steel4: (i) an initial population,
with porosity 6� 10�4, and (ii) a second population of voids
nucleated after some deformation, with initial porosity 5� 10�2.
Since we do not consider continuous nucleation in the present
model, we must consider some intermediate initial porosity. We
thus consider the average value f0 ¼ 5� 10�3 permitting to ac-
count for continuously nucleated voids, which is reasonable for
metallic alloys. Furthermore in TRIP600 steels, the primary popu-
lation of voids results from the decohesion between the matrix and
non-metallic soft MnS inclusions (Uthaisangsuk et al., 2009). For
such a mechanism it is reasonable to assume that the initial voids
are spherical, so that the initial matrix P0 is a multiple of the
identity matrix. Note in addition that the initial void shape has, in
general, little influence on softening in shear provided that the ratio
between the semi-axes does not differ too much from unity
(Tvergaard, 2015). Finally, we need to specify the values of the

Fig. 2. Boundary conditions considered in the numerical simulations.

4 Since the TRIP600 and TRIP780 steels are very close from a microstructural
point of view, it is reasonable to consider that the values determined experimen-
tally by Uthaisangsuk et al. (2009) for TRIP600 also apply to TRIP780.



coalescence parameters. The calibration of parameters is based on
the comparison of the predictions of the ML model and the results
of some micromechanical cell calculations of Tvergaard and co-
workers (Morin et al., 2016). For initially spherical voids, the ratio
between the “critical” porosity ðf þ gÞc and the initial one f0 was
found to be between 2 and 3. We adopt here the value
ðf þ gÞc ¼ 10�2 in all simulations, which corresponds to a ratio of 2
between the critical and initial porosities. This value is the mini-
mum one in the interval ½2;3� determined by Morin et al. (2016), in
compliance with the well-known observation that the “best” crit-
ical porosity values for reproduction of actual experiments tend to
be slightly lower than those determined from micromechanical
simulations (see e.g. Bergheau et al. (2014)). Also, we adopt the
values d ¼ ½4;4;9;9� for the cases b ¼ ½90+;63+;25+;0+� respec-
tively. The value used for shear-dominated loadings is consistent
with that calibrated on the basis of shear-dominated micro-
mechanical simulations (see Morin et al. (2016)), and that used for
tension-dominated loadings is consistent with classical values
adopted in the literature in the absence of shear (see e.g. Besson
et al. (2001)).

A summary of all the parameters used is given in Table 1.

5. Results

5.1. Force-displacement curves

The force-displacement curves are provided in Fig. 3aeb.
Globally speaking, the experimental results are well reproduced by

the ML model, in all cases considered. In particular the magnitude
of the force, the gradual softening and the final failure of the
specimen are qualitatively well reproduced by the model for all
values of b.

Some more detailed comments are in order:

� In all cases considered, the numerical forces do not perfectly
coincide with the experimental ones, even at the beginning of
the plastic phase. The small difference is a result of:
* The choice of the value of the initial porosity f0. Indeed, the
value adopted is probably not optimal since we considered
some average value between initially present and continu-
ously nucleated voids. An optimization should be possible to
get the best possible fit between numerical and experimental
curves, but has not been attempted.

* The hypothesis of a plastically isotropic von Mises matrix
made in the ML model. Indeed, the material used in the ex-
periments cannot be considered as totally isotropic, as shown
by Dunand and Mohr (2011b), who modeled it with an
isotropic von Mises yield function and a non-associated Hill
(1948) flow rule.

� The final failure of the material observed numerically, corre-
sponding to the end of the simulations, does not occur exactly
when it is observed experimentally. The slight difference can be
explained by the heuristic modeling of coalescence based on
Tvergaard and Needleman (1984)’s approach, and notably the
use of the same value of the heuristic parameter parameter
ðf þ gÞc for all the loading cases. A possible way to improve the
predictions of the model would be to adjust the value of this
parameter according to the loading case considered, or to
consider a more advanced model to describe coalescence.

� The very final stage of the fracture process is unstable, both
experimentally and numerically. In the numerical simulations
the final softening is brutal (see Fig. 4aef), the slope of the force-
displacement curve becoming vertical. It is remarkable that the
instability observed experimentally is thus reproduced in the
numerical simulations.

Fig. 3. Force-displacement response: experimental results (Exp.) and predictions of Madou-Leblond's model (ML).

Table 1
Values of parameters for the Madou-Leblond model.
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n
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185,000 0.3 5� 10�3 dij 1.5 10�2 [4; 9] 1460 1:63� 10�3 0.204



Fig. 4. Complementary results for the force-displacement curves: zoom on the final stage of the numerical simulations.

Fig. 5. Location of the crack in the case b ¼ 90+ .

Fig. 6. Location of the crack in the case b ¼ 63+ .

Fig. 7. Location of the crack in the case b ¼ 25+ .

Fig. 8. Location of the crack in the case b ¼ 0+ .



5.2. Location of the crack

The location of crack initiation is represented in Figs. 5e8, for
b ¼ ½90+;63+;25+;0+� respectively. In particular, we provide in
each case: (a) a photograph of the fully or partially fractured
specimen; and (b) the distribution of the damage parameter
d defined by equation (17) half-way through the thickness of the
specimen at the end of the numerical simulation. For complete-
ness, we also represent the distribution of the damage parameter
and the deformed mesh in section AA (defined in Fig. 2) in Fig. 9a
and b at the end of the numerical simulation, in the sole case
b ¼ 63+; this notably permits to observe the necking of the
specimen. The location of the crack is globally well reproduced by
the ML model.

Again, more detailed comments are in order:

� In all the simulations, damage starts growing at the center of the
specimen with very high values in some cases (see Fig. 9a). This
suggests that the crack initiates at the center of the specimen
and then propagates toward the free boundary.

� In the case b ¼ 0+, the distribution of the damage parameter is
more diffuse than in the other cases: the “crack” is more a
damaged zone than a truly localized crack. However, the nu-
merical simulation still ultimately becomes unstable (see
Fig. 4f), emphasizing that failure is still reached.

� It is not possible to numerically get a long crack like in the
experiments (that is a large zone where d ¼ 1) because the
simulations become unstable and stop. A complete simula-
tion of the experiments would require incorporation of dy-
namic effects (inertia forces) during the final brutal drop of
the load.

5.3. Comparison with the predictions of Gurson's model

In order to assess the importance of void shape effects on shear-
dominated fracture, it is interesting to investigate the predictions of

Gurson (1977)'s model disregarding void shape effects, in the case
b ¼ 0+.5 The horizontal force-displacement curve and the distri-
bution of the damage parameter (identical in this case to qf � since
g ¼ 0) at the instant corresponding to the end of the simulation
based on the ML model (i.e. at uxx3:4 mm) are represented in
Figs. 10 and 11 respectively.

It may be observed that Gurson's model does not predict any
failure because no instability occurs; this is true even when the nu-
merical simulation is pursued by prescribing larger horizontal dis-
placements (this is not shown in the figures). Also, the damage
parameter does not increase significantly, in contrastwithwhat occurs
with the ML model. The reason why Gurson's model predicts lower
damage levels than the ML model is that the porosity does not in-
crease for shear loadings. In otherwords, for such loadings the damage
is mainly due to void shape effects disregarded in Gurson's model.

6. Discussion

Globally speaking, the ML model has permitted to accurately
reproduce the experiments of ductile fracture under combined
tension and shear. The macroscopic softening as well as the loca-
tion of cracks are well reproduced for various loading conditions
ranging from tension to pure shear. The comparison with Gurson's
model has highlighted the importance of void shape effects on the
progressive degradation of the material.

It should however be noted that other authors, using other
models, have considered the same experiments:

� Dunand and Mohr (2011a) using Nahshon and Hutchinson
(2008)’s heuristic modification of Gurson's model. The macro-
scopic softeningwaswell reproducedwith values of parameters in
the range recommended by Nahshon and Hutchinson (2008).
Crack locations were however not provided so it is not clear
whether themodel can correctly reproduce the initiation of cracks.

Fig. 9. Complementary results for b ¼ 63+ in the section AA.

Fig. 10. Horizontal force versus horizontal displacement in the case b ¼ 0+: experi-
mental results (Exp.), predictions of Madou-Leblond's model (ML) and predictions of
Gurson's model (Gurson).

5 It is worth noting that no subroutine has been developed for Gurson (1977)’s
model: we have simply adapted the UMAT for the ML model by deleting the in-
structions pertaining to the update of the voids' shape and orientation. The initially
spherical voids then remain spherical throughout the simulation.



� Danas and Aravas (2012) using Danas and Ponte Casta~neda
(2009)’s model. In their simulations, they observed some soft-
ening as well as the location of cracks. However, they did not use
the material properties of the TRIP780 steel, nor did they
compare the model predictions to the observations.

7. Conclusion

The topic of this paper was the theoretical prediction of ductile
failure under shear-dominated loadings. The predictions of the
Madou-Leblond (ML) model (Madou and Leblond, 2012a, 2013,b;
Madou et al., 2013) incorporating void shape effects were
compared with the experimental results of Dunand and Mohr
(2011a,b) obtained on “butterfly” specimens subjected to various
loadings.

The ML model has permitted to reproduce accurately the major
features of all experiments, notably the macroscopic softening
under shear-dominated loadings as well as the location of cracks.
These results, together with those of Morin et al. (2016) on the
comparison of the predictions of the ML model and the results of
micromechanical simulations under shear-dominated loadings of
Tvergaard and co-workers (Nielsen et al., 2012; Tvergaard, 2015),
demonstrate the capabilities of the ML model for prediction of
ductile failure at low stress triaxiality, notably in the presence of
intense shear. The ML model thus stands as a viable, more
micromechanically-based although more complex, alternative to
Nahshon and Hutchinson (2008)’s modification of Gurson (1977)'s
model for the description of ductile damage at low stress
triaxialities.

The ML model can however be improved in order to reproduce
more accurately the experimental results considered here. Several
directions can be explored in this respect:

� Coalescence of voids.The modeling of coalescence considered in
this work is a straightforward extension of Tvergaard and
Needleman (1984)'s heuristic approach. It does not rely on a
micromechanical basis and needs a calibration of parameters.
An alternative approach would consist of using a micro-
mechanical model of coalescence for ellipsoidal voids subjected
to combined tension and shear. But such a general model of
coalescence is at present lacking, although the case of spheroidal
voids has been considered in recent works of Tekoglu et al.
(2012) and Torki et al. (2015).

� Plastic anisotropy of the matrix. The ML model applies to plasti-
cally isotropic matrices, while the material used in the experi-
ments is mildly anisotropic. It would be interesting to consider
instead a model for plastic porous materials incorporating a
coupling between plastic anisotropy of the matrix and void
shape effects (see e.g. Monchiet et al. (2008); Keralavarma and
Benzerga (2010); Morin et al. (2015)).
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