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a b s t r a c t

Linearity is a common assumption for many real-life systems, but in many cases 
the non-linear behavior of systems cannot be ignored and must be modeled and 
estimated. Among the various existing classes of nonlinear models, Parallel 
Hammerstein Models (PHM) are interesting as they are at the same time easy to 
interpret as well as to estimate. One way to estimate PHM relies on the fact that 
the estimation problem is linear in the parameters and thus that classical least 
squares (LS) estimation algorithms can be used. In that area, this article introduces 
a regularized LS estimation algorithm inspired on some of the recently developed 
regularized impulse response estimation techniques. Another mean to estimate 
PHM consists in using parametric or non-parametric exponential sine sweeps 
(ESS) based methods. These methods (LS and ESS) are founded on radically 
different mathematical backgrounds but are expected to tackle the same issue. A 
methodology is proposed here to compare them with respect to (i) their accuracy, 
(ii) their computational cost, and (iii) their robustness to noise. Tests are 
performed on simulated systems for several values of methods respective 
parameters and of signal to noise ratio. Results show that, for a given set of data 
points, the ESS method is less demanding in computational resources than the LS 
method but that it is also less accurate. Furthermore, the LS method needs 
parameters to be set in advance whereas the ESS method is not subject to 
conditioning issues and can be fully non-parametric. In summary, for a given set 
of data points, ESS method can provide a first, automatic, and quick overview of a 
nonlinear system than can guide more computa-tionally demanding and precise 
methods, such as the regularized LS one proposed here.

1. Introduction

Systems are generally assumed to behave linearly and in a noise-free environment. This is in practice never perfectly the

case. First, nonlinear dynamic behaviors are very common in real life systems [12,15]. Second, the presence of noise is a nat-
ural phenomenon that is unavoidable for all experimental measurements. In order to perform reliable model estimation of 
such systems, one should thus keep in mind these two issues and take care about them. Indeed, all the noise that is not cor-
rectly removed from the measurements could be misinterpreted as nonlinearities, thus polluting measurements. And if non-
linearities are not accurately estimated, they will end up within the noise signal and information about the system under 
study will be lost.

⇑ Corresponding author.

E-mail address: marc.rebillat@ensam.eu (M. Rebillat).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ymssp.2017.11.015&domain=pdf
https://doi.org/10.1016/j.ymssp.2017.11.015
mailto:marc.rebillat@ensam.eu
https://doi.org/10.1016/j.ymssp.2017.11.015
http://www.sciencedirect.com/science/journal/08883270
http://www.elsevier.com/locate/ymssp


The problem addressed here is the estimation of nonlinear models of real life systems [20,10,5]. In order to build a non-
linear model, some approaches are based on a physical modeling of the structure whereas some perform without any phys-
ical assumption (black-box models). As nonlinear mechanisms in structures are complex and various and as it is not
intended here to build a model for each case, it is chosen to rely on black-box models. Among these black-box approaches,
some assume a given form for the selected model (block-oriented models [2,10,5,28]) whereas some do not put constraints
on the model structure. Because block-oriented models can be interpreted easily, this class of models has been retained. A
class of block-oriented models that is particularly interesting is the class of Parallel Hammerstein Models (PHM, see Fig. 1). It
belongs to the class of ‘‘Sandwich models” and is shown to possess a reasonable degree of generality [20,5].

In a PHM, each branch is composed of a nonlinear static polynomial element followed by a linear one, hn½k�, as shown in
Fig. 1 where k denotes the discrete-time in samples. The relation between the input e½k� and the output s½k� of such a system
is given by Eq. (1), where � denotes the convolution product:

y½k� ¼ h0 þ
XN
n¼1

hn � un½k�: ð1Þ

In this model, each impulse response hn½k� is convolved with the input signal raised to its nth power and the output s½k� is
the sum of these convolutions. h0 stands for the constant offset. The first impulse response h1½k� represents the linear
response of the system. The other impulse responses fhn½k�gn2f2���Ng model the nonlinearities. The family fhn½k�gn2f1���Ng will
be referred to as the kernels of the model. The focus is put here on the estimation of the kernels of PHM. In terms of real
life applications, PHMs have already proven their usefulness in modeling power amplifiers [11,8], loudspeakers [24], dam-
aged structures [17,23], or digital audio effects [1].

One way to estimate PHM relies on the fact that the estimation problem is linear in the parameters and thus that classical
least squares (LS) estimation algorithms can be used. A popular approach is thus to pass the input through a parallel con-
nection of some nonlinear basis functions that are each followed by a finite impulse response (FIR) filter [8]. The correspond-
ing multiple-input single-output problem is then solved using standard FIR identification method. For example, Gallman [9]
used Hermite polynomials as orthogonal basis functions with Gaussian inputs. The main drawbacks of these approaches is
that the user gets no physical insight in the number of parallel branches in the system under test, and that for systems with
long memories a large number of parameters is needed due to the FIR-nature of the model. To limit these drawbacks Schou-
kens et al. [30,29] proposed to couple a best linear approximation [22] at different excitation levels with a singular value
decomposition and a rational transfer function parametrization LTI subblocks. An alternative method relies on Volterra series
analytical method and wavelet balance method under multilevel excitations [3]. In that area, this article introduces a regu-
larized LS identification algorithm inspired on the recently developed regularized impulse response estimation techniques
[21,14].

Another means to estimate PHM consists in using exponential sine sweeps (ESS) based methods. This idea for the analysis
of nonlinear system has been first presented by Farina [6] and is sometime referred to as the ‘‘nonlinear convolution” [7]. This
method has been later formally demonstrated [19,18,24] and it is now well established that almost nonparametric versions
of PHM can be very easily and rapidly estimated using it. However, one drawback of these ESS based methods is that the
number of parallel branches is chosen arbitrarily. Nevertheless, this drawback has been overcome by Rébillat et al. [25] mak-
ing this estimation method now fully nonparametric.

These two classes of methods (LS and ESS) are founded on radically different mathematical backgrounds but have been
developed to solve the same issue. A methodology is thus proposed here to compare them with respect to (i) their accuracy,
(ii) their computational cost, and (iii) their robustness to noise. Tests are performed on simulated systems for several values
of methods respective parameters and of signal to noise ratio. The paper is organized as follows: the regularized least squares
method and the exponential sine sweep method are introduced in Sections 2 and 3. The systems under study and the
methodology proposed to compare both methods are presented in Section 4. Results are then provided in Section 5 before
concluding in Section 6.

Fig. 1. Representation of Parallel Hammerstein Models (PHM).



2. Regularized Least Squares method (RLS)

2.1. Linear least squares formulation

The problem of identifying a PHM can be formulated as a linear-in-the-parameters problem when FIR representations, or
other basis function expansion LTI representations, are used to model the LTI blocks fhn½k�gn2f1���Ng [8]. Indeed when Eq. (1) is
elaborated on further, one obtains:

y½k� ¼ h0 þ
XN
n¼1

Xnh
s¼0

hn½s�un½k� s�; ð2Þ

where nh is the length of the impulse response of the system under test. It can be observed that Eq. (2) can be written under
matrix notation as:

y ¼ Kh; ð3Þ
where y is the vector containing all time measured time instances of y½k�;K is the regressor matrix depending on the applied
input signal, and h is the parameter vector containing the impulse responses to be estimated:

y ¼

y½0�
y½1�
..
.

y½T � 1�

2
66664

3
77775 2 RT�1 ð4Þ

K ¼ 1 KhðuÞ Khðu2Þ . . . KhðuNÞ� � 2 RT�Nðnhþ1Þþ1 ð5Þ

KhðxÞ ¼

x½0� x½�1� . . . x½�nh�
x½1� x½0� . . . x½1� nh�
..
. ..

. . .
. ..

.

x½T � 1� x½T � 2� . . . x½T � nh � 1�

2
66664

3
77775 ð6Þ

h ¼ h0 h1½0� h1½1� . . . h1½nh� . . . hN ½0� hN ½1� . . . hN ½nh�½ �T 2 RNðnhþ1Þþ1�1; ð7Þ

where :T stands the transpose operator. It is straightforward to observe that the least squares estimate of the parameters ĥls
can be obtained by:

ĥls ¼ KTK
� ��1

KTy: ð8Þ

2.2. Introducing prior knowledge through regularization

In the previous section, the FIR are estimated using a linear least-squares approach. However, this approach does not take
the prior knowledge available on the system into account. For instance, it is in many cases known that the system impulse
response is exponentially decaying (stability), and highly correlated (smoothness). This type of prior knowledge can be
imposed using a regularized linear least-squares approach. This approach has been successfully developed and applied in
the linear time-invariant case [21,14], and has already been extended towards the identification of Hammerstein systems
[26].

The regularized least squares approach introduces an extra term in the cost function that penalizes the parameters such
that smoothness and exponential decay is obtained. The regularized cost function is given by:

Vr ¼ jjy� Khjj2 þ hTRh: ð9Þ
The regularization matrix R is implemented here as a block-diagonal matrix using the TC kernel [21,14]:

R ¼

0 0
Rh

. .
.

0 Rh

2
66664

3
77775 ð10Þ

where Rh 2 RNðnhþ1Þþ1�Nðnhþ1Þþ1:



Rhði; jÞ ¼ b
a

aðiþjÞ=2ð1� aÞ ð11Þ

a ¼

1; if i ¼ j ¼ 1
1þ a if i ¼ j – 1
� ffiffiffi

a
p

if ji� jj ¼ 1
0 otherwise

8>>><
>>>:

ð12Þ

This regularization approach relies on two hyperparameters a and b that respectively tune the smoothness and decay,
and the importance of the prior knowledge in the cost function. The optimal selection of these hyperparameters is performed
here using a grid search and cross-validation. The estimated parameters ĥreg are now obtained as:

ĥreg ¼ KTK þ R
� ��1

KTy: ð13Þ

2.3. Drawbacks and advantages

2.3.1. Linear least-squares approach
A critical step in the use of the linear least-squares approach is the model order selection: what is the optimal length nh of

the impulse response models and how many parallel branches need to be considered? The choice of the impulse response
length is typically made by performing a validation step to avoid overfitting, or by using the Akaike Information Criteria (AIC)
or Minimum Description Length (MDL) indicator [22]. The number of parallel branches (the highest degree of the nonlinear-
ity N) can be set by the user, or obtained by performing a validation step.

Another major drawback of this approach is the high number of parameters that needs to be estimated. When a system
with a fairly long memory needs to be modeled, a high number of taps nh needs to be considered in the FIR model of each
branch. This results in a high number of parameters and, as a consequence, a fairly high variance on the estimated param-
eters. Furthermore, the large nature of the regressor matrix, constructed using similar basis functions, makes it prone to
numerical conditioning problems. Note that Eqs. (8) and (13) are implemented in practice using a QR decomposition in order
to obtain a more robust estimator.

2.3.2. Regularized least-squares approach
The regularization approach is much less prone to overfitting: the regularization pushes the end of the estimated impulse

towards zero. Hence, the selection of the optimal FIR length nh is not that critical, it should be selected long enough to cap-
ture a couple of time constants of the system dynamics. The number of parallel branches however still need to be set by the
user, or obtained by performing a validation step.

Although it seems at first sight that the regularized least-squares approach still results in a high number of parameters,
and hence a fairly high variance on the estimated parameters. This is not the case. The variance on the parameters is reduced
significantly due to the regularization. The effective number of parameters is much lower than Nðnh þ 1Þ þ 1 [13]. This comes
at a cost of a small bias introduced by the regularization [21].

The regularization approach introduces two hyperparameters a and b tuning the smoothness and decay, and the impor-
tance of the prior knowledge in the cost function. The optimal selection of these hyperparameters is performed here using a
grid search and cross-validation. The search for the optimal hyperparameters increases the computational cost of the regu-
larized least squares approach significantly compared to the linear least squares approach. Note that the same regularization
matrix Rh is used for each branch of the parallel Hammerstein structure to keep the number of hyperparameters as low as
possible.

3. Exponential Sine Sweep method (ESS)

The exponential sine sweep method developed to estimate PHMs is briefly recalled here [19,18,24,25].

3.1. Exponential sine sweeps

To experimentally cover the frequency range over which the system under study has to be identified, cosines with time-
varying frequencies are commonly used. When the instantaneous frequency of u½k� ¼ cos½/½k�� is increasing exponentially
from f 1 to f 2 in a time interval T sampled with the sampling frequency f s, this signal is called an ‘‘Exponential Sine Sweep”.

It can be shown [24,25] that by choosing Tm ¼ ð2mp� p=2Þlnðf 2f 1Þ=2pf 1 with m 2 N� one obtains the following property:

8n 2 N�; cos n/½k�½ � ¼ cos /½kþ Dn�½ � with Dn ¼ f sTm lnðnÞ
ln f 2

f 1

� � : ð14Þ



Eq. (14) states that for any exponential sine sweep of duration Tm, multiplying the phase by a factor n yields the same
signal, advanced in time by Dn samples.

3.2. Kernel recovery in the time domain

If an exponential sine sweep is presented at the input of a PHM, by combining Eqs. (1) and (14) and by using properties of
Chebyshev polynomials [19,18,24,25], one obtains the following relation:

y½k� ¼
XN
n¼1

ðgn � uÞ½kþ Dn� with gn½k� ¼
XN
i¼1

~ci;nhi½k� ð15Þ

where gn½k� can be interpreted as the contribution of the different kernels to the nth harmonic and ~ci;n is the coefficient ðn; iÞ
of the matrix eC . Details of the computation of the matrix eC are provided for example in Rébillat et al. [24].

In order to identify each kernel hn½k� separately, a signal u�1½k� operating as the inverse of the input signal u½k� in the con-
volution sense can be built. After convolving the output of PHM y½k� given in Eq. (15) with u�1½k�, one obtains Eq. (16):

g½k� ¼ ðy � u�1Þ½k� ¼
XN
n¼1

gn½kþ Dn�: ð16Þ

Because Dtn / lnðnÞ and f 2 > f 1, the higher the order of nonlinearity n, the more advanced is the corresponding gn½k�.
Thus, if Tm is chosen long enough, the different gn½k� do not overlap in time and can be separated by simply windowing them
in the time domain. Using Eq. (15), the family fhn½k�gn2f1���Ng of the kernels of the PHM under study can then be fully extracted
as

½h1½k� � � �hN½k��T ¼ eC ½g1½k� � � � gN ½k��T : ð17Þ

3.3. Autonomous determination of the number of kernels

An autonomous procedure has been proposed that determines the effective number of kernels which can be distinguished
from noise [25]. Let’s consider g½k� as defined in Eq. (16) in a short time interval In centered around the expected occurrence
of the n-th harmonic contribution, i.e. k 2 In ¼ ½kn;1; . . . ; kn;2� with Dn 6 kn;1 and kn;2 < Dn�1. Let’s consider n½k� a noise record
in a short time interval than can pratically be extracted from g½k�. The question is whether g½k� significantly protrudes from
background noise n½k� in that interval – and therefore originates from a nth nonlinearity – or whether it is mainly noise. This
corresponds to two alternative hypotheses:

� H0: g½k�; k 2 In is noise only
� H1: g½k�; k 2 In contains an nth order harmonic contribution gn½k�.

An estimate of the variance in interval In under H0 is returned by

r̂2
In jH0 ¼ 1

kn;2 � kn;1 þ 1

Xkn;2
k¼kn;1

n2½k� ð18Þ

Therefore, assumption H0 is to be rejected if the current ‘‘variance”

r̂2
In

¼ 1
kn;2 � kn;1 þ 1

Xkn;2
k¼kn;1

g2½k� ð19Þ

is found statistically greater than r̂2
In jH0. This can be easily formalized with a F-test for the equality of two variances: H0 is

rejected if the ratio r̂2
In
=r̂2

In jH0 is greater than FðaÞK�1;K�1, the critical value of the F distribution with K � 1 and K � 1 degrees
of freedom and a significance level of a. K is here defined as the number of samples contained within the time interval
In ¼ ½kn;1; . . . ; kn;2�. The highest-order harmonic contribution gN½k� that is found significant through this procedure then pro-
vides the model order N. It is important to note that Gaussian distributions are assumed here and that may not be exactly the
case in practice.

3.4. Advantages and drawbacks

The method described here easily provides a direct mathematical access to all the kernels of a PHM. The main advantage
of this method is to be fast and simple: using only one exponential sine sweep one can have direct access to the kernels of an
arbitrary vibrating device without the need of any complicated signal processing procedure (convolution, time windowing



and matrix multiplication). However, the input sine sweep used here has to satisfy some specific requirements. First of all,
the input sine sweep must have its frequency varying exponentially with time. It is important to keep in mind that at the cost
of computational time, solutions exist that allow to relax this assumption [27]. Secondly, in the framework presented here
[24], the length of the exponential sine sweep cannot be set arbitrarily and must be chosen among a given set of admissible
values. Again, it is important to notice that this assumption is not necessary and can be very easily relaxed by choosing dif-
ferently the initial and final phases of the exponential sine sweep [18]. A drawback of this method is thus the relatively low
flexibility of its input signal. Another limitation of this method lies in its unability to distinguish between nonlinearities and
experimental noise. This could result in an overestimation of the nonlinear behavior as estimated kernels also include some
plant noise. Finally, recent studies [31,4] have shown that distortion artifacts can appear in the causal part of the impulse
responses estimated by means of exponential sine sweep when the system under study is not perfectly modeled by a
PHM. However, as mentioned by references [31,4] those artifacts remain of very small amplitude.

4. Comparison methodology

The two methods (LS and ESS) described in Sections 2 and 3 are founded on radically different mathematical backgrounds
but are expected to solve the same issue. A methodology is proposed here to compare themwith respect to (i) their accuracy,
(ii) their computational cost, and (iii) their robustness to noise for different systems presented in the following section.

4.1. Systems under study

This section introduces the three simulated systems that have been chosen to compare the two methods presented in
Sections 2 and 3. The first one corresponds to a classical PHM system with low time constants, the second one is a PHM sys-
tem with a delay and longer time constants, and the third one is a hysteretic system with a dynamic nonlinearity that cannot
be mathematically represented as a PHM but only approximated by this structure.

4.1.1. System #1: PHM system with low time constants
The first system considered here constitutes an academical case study over which the methods will be compared. The

parameters used to define it are provided in Table 1 and the impulse responses of each branch are represented in Fig. 2. This
system of order N ¼ 4 has been chosen as a basic example aiming at demonstrating the global performances of both
methods.

4.1.2. System #2: PHM system with delay and longer time constants
The second system considered here is different from the first one as here two important points are investigated. The first

point is related to the presence of delays in the impulse responses of each branch, this is something relatively common in
practice and this can affect the performance of both methods. The second point is the fact that systems under study can have
longer response times, which means in practice that more samples have to be estimated by both methods. A cascade of Ham-
merstein models of order N ¼ 4 has again been chosen. For its Kernels, impulse responses of rational filters (2 poles and 2
zeros) have been chosen. All the parameters are provided in Table 2 and the impulse responses of each branch are repre-
sented in Fig. 3. This system has been designed in order to have a longer response time than the system #1 as well as to
present a delay.

4.1.3. System #3: Hysteretic system with a dynamic nonlinearity
Hysteresis is a phenomenology commonly encountered in very diverse engineering and science disciplines. A system is

said to be hysteretic when it exhibits an input–output loop as the input frequency approaches zero. This kind of system is
inherently nonlinear and cannot be represented exactly by a PHM. This system has been chosen here as a mean to assess the
performances of both methods for cases where the system to be identified does not correspond exactly to PHM. This is
always the case in practical applications as PHMs only constitute an idealization of reality. The implementation chosen here
belongs to the benchmarks proposed at the ‘‘Workshop on Nonlinear System Identification Benchmarks” held in Brussels in
2016. The implementation details of this benchmark are provided in Noël and Schoukens [16] and are briefly recalled here.

The vibrations of the Bouc-Wen oscillator with a single mass simulated here are governed by Newton’s law of dynamics
written as follows in continuous time domain:

Table 1
Parameters of the simulated PHM system #1. Matlab R2016b functions used to generate the filter coefficients are reported in the ‘‘Parameters” column. The
sampling frequency is chosen as f s ¼ 105 Hz.

Order Gain Filter type Filter order Parameters

1 1 Lowpass Chebychev 3 R ¼ 3;Wp ¼ 0:2 (cheby1)
2 0.5 Lowpass Butterworth 2 Wn ¼ 0:15 (butter)
3 0.25 Lowpass Chebychev 3 R ¼ 30;Wst ¼ 0:3 (cheby2)
4 0.15 Lowpass Butterworth 4 Wn ¼ 0:05 (butter)



m€yþ c _yþ kyþ zðy; _yÞ ¼ u ð20Þ
wherem is the mass constant, k and c the linear stiffness and viscous damping coefficients, y the displacement, u the external
force, and an over-dot indicates a derivative with respect to time. The dynamic, i.e. history-dependent, nonlinear term zðy; _yÞ

encodes the hysteretic memory of the system and obeys the following first-order differential equation:

_zðy; _yÞ ¼ a _y� b cj _yjjzjm�1zþ d _yjzjm
ð21Þ

The five Bouc-Wen parameters a; b; c; m and d are used to tune the shape and the smoothness of the system hysteresis
loop. All the parameters values are provided in Table 3. These equations are integrated in time using a Newmark method.

The sampling frequency is chosen as f s ¼ 2500 Hz for this system.

4.2. Performances indexes

In order to compare both methods several performance indexes (PI) have been considered and are presented below.

4.2.1. PI1: Relative difference between the reconstructed signal and the output signal for an exponential sine sweep input

The first performance index considered here aims at assessing the ability of the estimated PHM model to reconstruct an

output signal that is in agreement with the actual output signal for the case of an exponential sine sweep input. Let yESS½k�
and ŷESS½k� be the actual and estimated output signals over K samples. This performance index is defined as:

Fig. 2. Impulse responses of the four branches of the PHM system #1.

Table 2
Parameters of the simulated PHM system #2. The sampling frequency is chosen as f s ¼ 105 Hz. A fixed delay of 50 samples is imposed on each impulse
response.

n f zeros ðkHzÞ jpzerosj f poles ðkHzÞ jppolesj Gains

1 0:15 0:95 1:5 0:97 1
2 0:4 0:92 4 0:95 0:5
3 1 0:93 0:1 0:96 0:25
4 2:2 0:9 0:5 0:97 0:3



PI1 ¼
PK

k¼0 ŷESS½k� � yESS½k�½ �2PK
k¼0 yESS½k�½ �2

This performance index can be computed for systems #1, #2, and #3.

4.2.2. PI2: Relative difference between the reconstructed signal and the output signal for a noise input
The second performance index considered here aims at assessing the ability of the estimated PHM model to reconstruct

an output signal that is in agreement with the actual output signal for the case of a noise input. Indeed, an exponential sine
sweep is an input signal that is favorable for the ESS method but less for the RLS one, whereas the opposite is true for the
noise input signal. It is thus important to consider the abilities of both methods with respect to that kind of inputs too. Let
yNOISE½k� and ŷNOISE½k� be the actual and estimated output signals over K samples. This performance index is defined as:

PI2 ¼
PK

k¼0 ŷNOISE½k� � yNOISE½k�½ �2PK
k¼0 yNOISE½k�½ �2

This performance index can be computed for systems #1, #2, and #3.

4.2.3. PI3: Relative difference between the estimated and original PHM kernels
The third performance index deals with the ability of both estimation methods to estimate PHM kernels that are close to

the original ones, when available. For system of order N, given estimated kernels fĥn½k�gn2½1:N� and original kernels
fhn½k�gn2½1:N�, this performance index is defined as:

Fig. 3. Impulse responses of the four branches of the PHM system #2.

Table 3
Parameters of the simulated hysteretic Bouc-Wen system.

Parameter m c k a b c d m
Value (units in SI) 2 10 5� 104 5� 104 1� 103 0:8 �1:1 1



PI3 ¼ 1
N

XN
n¼1

PK
k¼0 ĥn½k� � hn½k�

h i2
PK

k¼0 hn½k�½ �2

0
B@

1
CA

This performance index can be computed only for systems #1 and #2. As the system #3may not be represented exactly as
a PHM, the notion of ‘‘original kernels” makes no sense for it.

4.3. Experimental plan

The aim is to compare the two methods with respect to their accuracy, their computational cost, and their robustness to
noise for the different systems presented in the following section. There exists thus two types of free parameters within the
experimental plan. The first type of free parameters will be linked with the methods. The second type of free parameters is
linked to the input signal. All the free parameters are listed in Table 4. The different methods that will be compared here and
their associated free parameters are listed in Table 5.

Among the available parameters, some are not free within the chosen experimental plan. Excepted for the nonparametric
exponential sine sweep method where it is found automatically, the order of nonlinearity of the estimated PHM is set to
N ¼ 4 for all methods. This ensures optimal results for system #1 and #2 as it effectively corresponds to the model structure.
For the input signals, care has been taken to ensure that the exponential sine sweep and the white gaussian noise have the
same number of samples and the same RMS value. For the exponential sine sweep, its start and stop frequencies are always
0:001f s and 0:4f s and its amplitude is unitary for all systems. The parameter Nmax corresponds to the maximummodel order
reachable by the NP-ESS when estimating N. This parameter has been chosen as Nmax ¼ 24. The parameter Nmax

FIR corresponds
to the maximum FIR length reachable by the RLS method when estimating NFIR. This parameter has been chosen as equal to
the maximum FIR length tested for the DLS method for each system. For all the sets of free parameters Nrep ¼ 10 repetitions
have been performed. Computations have been run on a computing station equipped with 128 Go of random access memory
and with 2 Intel Xeon ES 2630 processors running at 2:6 GHz, each with 6 cores and with 15 MB of cache memory.

5. Results

This section presents the results comparing the regularized least squares method and the exponential sine sweep method
presented in Sections 2 and 3 applied to the systems under study using the methodology detailed in Section 4.

5.1. System #1

As stated before, the first system considered here constitutes an academical case study over which the methods will be
compared (see Section 4.1.1). Before comparing both methods, it is interesting to assess the influence of the various free
parameters linked with the methods on the computation time and on the performance indexes. From Table 4, the free
parameters related to the methods are: T the duration of the input signal and NFIR the number of samples retained in each
FIR for the DLS method only.

With respect to computational time, it is straightforward that the larger T or NFIR, the larger the computation time. Indeed
it is well known that the linear least-squares algorithm has a computational complexity of which grows in TN2

FIR. This com-
putational complexity is further increased for the regularized least squares case since the hyperparameters need to be esti-
mated too. Regarding the ESS-based methods, the most demanding computational step is a convolution that has a
complexity in O T logðTÞð Þ when using FFT-based algorithms.

Results highlighting the influence of T and NFIR on the various performance indexes (PIs) are provided in Fig. 4. From the
left column of this figure, it can be observed that whatever the considered method and the considered PIs, the increase of the
input signal duration leads to a decrease of the PI. This is rather logical that the methods perform better when more points
are available. However, it can be seen that for the DLS method making use of the ESS as input signal, this is not true: PIs
exhibit an increasing tendency with increasing input length. This could be attributed to numerical conditioning issues,

Table 4
List of the free parameters. ESS: Exponential sine Sweep. WGN: White Gaussian Noise.

Name Description Values

T Duration of the input 0:05–5 s
N Order of nonlinearity 4

#1: 10 to 100 samples
NFIR FIR length #2: 120–210 samples

#3: 250–400 samples
u½k� Input signal ESS or WGN
SNR Signal to noise ratio 0 dB and �60 dB



keeping in mind the fact that the ESS is not the optimal input for the DLS method. For the DLS methods, the influence of NFIR

on the various PIs is shown on the right column of Fig. 4. It can be observed that for each PIs, increasing the FIR length leads
to a decrease of the PI, which was also expected.

The methods can also be compared in a more general manner as presented in Fig. 5. On this figure, one point presents the
result obtained by one method, for one run and for a given combination of free parameter without any additional post-
processing. Results are presented for SNR¼ 0 dB on the left column and for SNR = 60 dB on the right column. Each line cor-
responds to a given PI as defined in Section 4.2.

Non-parametric exponential sine sweep method. The points corresponding to the non-parametric exponential sine
sweep method (NP-ESS) are shown as red crosses on Fig. 5. From this figure, it can be seen that regarding PI1, i.e. the ability
of the method to reconstruct an ESS, ESS and NP-ESS methods have similar performances in terms of computation time and

Table 5
Compared methods with their associated free parameters.

1 Non parametric exponential sine sweep method NP-ESS T;Nmax

2 Parametric exponential sine sweep method ESS T;N
3 Direct least-squares method DLS T;N;NFIR ;u½k�
4 Regularized least-squares method RLS T;N;Nmax

FIR ;u½k�

Fig. 4. Influence of the input signal duration T (left column: a,b,c) and of the FIR length NFIR (right column: c,d,e) on the various performance indexes for
system #1 at SNR = 60 dB. The average values of the PIs �1 standard deviation are plotted. See Table 5 for the method name abbreviations.



of precision. An improvement of the estimation quality with the SNR is also clearly visible. However, this is not true for PI2
which is related to noise reconstruction. For both SNR values, the NP-ESS is not able to provide acceptable reconstruction
results (acceptable results only for SNR = 60 dB and T ¼ 5 s). Regarding the ability of the NP-ESS to estimate the Kernels
of the system, it can be observed that in the low SNR condition (0 dB) the method fails but in the high SNR condition (60
dB) it provides fair results, specially for longer input signal length. Furthermore one can also notice that, for a given compu-
tation time, the NP-ESS method provides results of equal quality than the DLS method for a SNR = 60 dB.

Exponential sine sweep. The points corresponding to the exponential sine sweep method (ESS) are shown as blue circles on
Fig. 5. From this figure, it can be observed that many of the commentaries done for the NP-ESS method are also true for the
ESS method. The main difference between the two methods can be seen for PI3. For this PI, the ESS method is shown to

Fig. 5. Comparison results for system #1. On this figure, one point presents the result obtained by one method, for one run and for a given combination of
free parameter without any additional post-processing. The DLS results are shown for all FIR lengths considered. Results are presented for SNR = 0 dB on the
left column and for SNR = 60 dB on the right column. Each line corresponds to a given PIs as defined in Section 4.2. See Table 5 for the method name
abbreviations. The indications ½X% > a� in the legend indicate the percentage of point that lie above the maximum plotted value a, i.e. out of the figure.



perform better than the NP-ESS one. This could be attributed to the fact that for the ESS method, the order of the system
N ¼ 4 is set up in advance whereas for the NP-ESS, this parameter is estimated. Thus, if this parameter is not correctly esti-
mated (which is the case for SNR = 0 dB), the method fails in reconstructing the system’s Kernels. Again, we can emphasize
the fact that for a given computational time the ESS method provide results of equal quality to the ones provided by the DLS
one for ESS andWGN reconstruction. Finally, the cost of the estimation of N can be seen as negligible making the ESS and NP-
ESS method comparable in terms of computation times.

Direct least-square. The points corresponding to the direct least-square method (DLS) are shown as black stars for an ESS
as an input signal and as pink plus for a WGN as input on Fig. 5. From this figure, it can be observed that the DLS has some-
times problems with conditioning using ESS as inputs (1:1% of the trials provide bad results). Furthermore the input signal
appears to have a lower influence for the quality of the reconstructed ESS than for the quality of the reconstructed WGN. For
the ESS and WGN reconstruction, a clear effect of the SNR can also be observed. As stated for the ESS and NP-ESS methods,
the Kernel estimation is of low quality for SNR = 0 dB but becomes fair when SNR drops to 60 dB. Finally, noise seems to have
an influence on computation time as it exhibits some variability with noise realization.

Regularized least-square. The points corresponding to the regularized least-square method (RLS) are shown as green dia-
monds for an ESS as an input signal and as yellow triangle for a WGN as input on Fig. 5. From this figure, it can be seen that
the RLS method is the slowest one. This is due to the hyper-parameters selection that necessitates computational resources.
Regarding quality, the RLS method is the one that provides the most precise and less variable results with respect to ESS and
WGN reconstruction for both SNR cases. For the present case, the input signal appears to have a very low influence for ESS
reconstruction but not for theWGN reconstruction. Again, Kernel estimation in the low SNR condition is not really successful
for the RLS method but excellent for the high SNR condition.

5.2. System #2

The second system considered here is different from the first one as here two important point are investigated: the pres-
ence of delays in the impulse responses of each branches, and longer response times (see Section 4.1.2). The influence of the
various free parameters linked with the methods on the computation time and on the performance indexes for this system
are very similar to the one observed for system #1 in the previous section and thus will not be presented here. Furthermore,
many general comments made for system #1 can also be made for system #2 and will thus not be repeated. The methods can
be compared in a general manner for this system as presented in Fig. 6.

The main difference between the results obtained for the system #1 and the system #2 lies in the gap in computational
time that appears with system #2. The main consequence of having longer time constants is that longer FIR filters are
needed. This has a direct impact on the computation time of DLS and RLS methods but not on the computation time of
the NP-ESS and ESS method that do not depend on this parameter. Another difference with the results obtained for system
#1 is that there is more difference between the results obtained with different input signals for the DLS and RLS methods.
Indeed for system #2, the results obtained using the WGN as input signal are much more precise than the ones obtained
using the ESS. This is again a consequence of the fact that the ESS signal is not sufficiently exciting the system for the
least-square based methods that are prone to numerical conditioning issues. These numerical issues are here particularly
enhanced as the number of FIR coefficient to be estimated is larger than in the previous example.

5.3. System #3

The system #3 is a hysteretic system with a dynamic nonlinearity and has been chosen here as a mean to assess the
performances of both methods for cases where the system to be identified does not correspond exactly to PHM (see Sec-
tion 4.1.3). The influence of the various free parameters linked with the methods on the computation time and on the
performance indexes for this system are very similar to the one observed for system #1 in previous sections and thus
will not be presented here. Furthermore, many general comments made for system #1 and #2 can also be made for sys-
tem #3 and will thus not be repeated. The methods can be compared in a general manner for this system as presented
in Fig. 7.

The main observation on the results obtained for the system #3 lies in the gap in computational time that really increases.
In order for PHM to approximate correctly system #3 longer FIR lengths are needed which leads to longer computational
time. Again, the ESS and NP-ESS methods are exempt from that side effect. Another remark of interest is linked with the
obtained reconstruction quality for ESS and WGN signals which is lower for the present system than for the other ones. This
lower reconstruction quality can be explained by the fact that as PHM cannot capture the whole dynamical behavior of sys-
tem #3 there will unavoidably remains some modeling error that cannot be lowered by any of the estimation methods. It is
interesting to observe that for this system the four methods provide ESS reconstruction results having very similar precisions
but at a much lower cost for ESS based methods. It is also important to realize that the filters used in the simulated systems
are globally low-pass filters. With that in mind, one important point with respect to the chosen input signals is that the ESS
has a limited bandwidth whereas the WGN potentially covers the full-spectrum of interest. In that sense, models estimated
using WGN should perform better in a wider frequency range than when using ESS. Indeed, the ESS does not excite the sys-
tem under its start frequency f 1 and above its stop frequency f 2 and consequently, the estimated impulse responses will miss



the information at frequencies lower than f 1 and higher than f 2. Considering that argument, it is thus expected that the
results for the WGN are quantitatively in average better than the results for the ESS. The last comment is related to the
impact of the input signal on the performances of the DLS and RLS methods. Previous observations were that both methods
gave better results when using WGN as input signal as it is better suited to least-squares than the ESS. This is not true any-
more for the present system. Indeed, ESS reconstruction results are here better when an ESS is used as input, and WGN
reconstruction results are better whenWGN is used as input. This highlights the fact that when trying to approximate a non-
linear system by an approximate model, the estimated model is valid only for a certain ‘‘class” of inputs that do not depart to
much from the input used for the estimation.

Fig. 6. Comparison results for system #2. On this figure, one point presents the result obtained by one method, for one run and for a given combination of
free parameter without any additional post-processing. The DLS results are shown for all FIR lengths considered. Results are presented for SNR = 0 dB on the
left column and for SNR = 60 dB on the right column. Each line corresponds to a given PIs as defined in Section 4.2. See Table 5 for the method name
abbreviations. The indications ½X% > a� in the legend indicate the percentage of point that lie above the maximum plotted value a, i.e. out of the figure.



6. Conclusion

The objective of the present study is to compare ESS-based methods and LS-based methods, amongst which the regular-
ized LS Parallel Hammerstein identification method which is introduced in this paper, in terms of computational cost, pre-
cision, robustness to noise with respect to their ability to estimate PHMs. The study has been conducted on three different
systems and some general comments comparing the two type of methods can be drawn:

1. The ESS-based methods are much less demanding than the LS-based ones in terms of computational resources. Fur-
thermore, their computational cost is independent of the system time constants. This comment is obviously dependent of
the current method’s implementations that are certainly perfectible. But even a more efficient implementation will not be
able to bridge the computational gap existing between the two classes of methods.

2. The LS-based methods, and more specifically the RLS one, provide results of higher quality than the ESS-based ones
for a given realization. However, for a given computational budget ESS-based methods and DLS methods can provide
results of similar quality. The RLS based method overcome by far all the other methods in terms of quality.

3. The LS-based methods seemmore robust to noise than the ESS-based ones. In presence of a large amount of noise, the
DLS method can be subject to numerical conditioning issue and the NP-ESS method may be unable to estimate correctly
the model order, thus leading to bad results. ESS-based methods and, more specifically the NP-ESS method appear as less
robust to noise than the LS-based ones.

4. The ESS-based methods need less parameters to be tuned than the LS-based ones. For the NP-ESS, no parameters have
to be given and for the ESS-one, only the model order N has to be set up in advance. For the RLS method, the model order
N has to by provided by the user, while the FIR length needs to be selected long enough to capture the unknown system
dynamics. These parameters cannot be set at an arbitrary high value as they impair directly the computational cost.

5. The LS-based methods are less restrictive in terms of input signals than the ESS-based ones. ESS-based methods rely
exclusively on an ESS signal, which can be restrictive for certain applications. LS-based methods do not put constraints on
the input signal. However it is observed that using WGN signals allows to get more precise results in cases where the

Fig. 7. Comparison results for system #3. On this figure, one point presents the result obtained by one method, for one run and for a given combination of
free parameter without any additional post-processing. The DLS results are shown for all FIR lengths considered. Results are presented for SNR = 0 dB on the
left column and for SNR = 60 dB on the right column. Each line corresponds to a given PIs as defined in Section 4.2. See Table 5 for the method name
abbreviations. The indications ½X% > a� in the legend indicate the percentage of point that lie above the maximum plotted value a, i.e. out of the figure.



system under study is a PHM.This is probably due to the fact that WGN excites the system in a wider spectral range than
the ESS. Despite of that, performances obtained using the two input signals are similar for the non-PHM nonlinear system
under study here.

The generality of these comments has to be mitigated with the fact that only three systems have been studied here. How-
ever, one general comment that can be drawn from the previous analysis is that by relying on the fact that ESS-based meth-
ods are rapid, non-parametric and that their computation time is system independent, they can be used to get a first estimate
of the system under study. From this estimate the various parameters needed to tune more precise methods (order of non-
linearity N and maximum FIR length for the RLS method for example) can be afterward deduced. On the basis of this set of
parameters, these more precise methods can then be used to perform a system estimation of quality. As the computation
cost associated with ESS-based methods is negligible in comparison with the one of LS-based methods, this automated
pre-parametrization step do not add much constraints from this point of view. The only drawback of this approach maybe
that in order to ensure an optimal result in terms of quality, the ESS pre-parametrization step must be run using an ESS input
and the precise RLS estimation using a WGN input. Thus, two excitations of the system may be needed instead of one. How-
ever, one can still use only an ESS input but at the possible detriment of quality.
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