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ABSTRACT 

Objectives 

In vitro studies showed that annulus fibrosus lose its integrity in idiopathic 

scoliosis. Shear wave ultrasound elastography can be used for noninvasive 

measurement of shear wave speed (SWS) in vivo in the annulus fibrosus, a 

parameter related to its mechanical properties. The main aim was to assess SWS 

in lumbar annulus fibrosus of scoliotic adolescents and compare it to healthy 

subjects.  

Methods 

SWS was measured in 180 lumbar IVDs (L3L4, L4L5, L5S1) of thirty healthy 

adolescents (13 yo ± 1.9) and thirty adolescent idiopathic scoliosis patients (13 yo 

± 2, Cobb angle: 28.8° ± 10.4°). SWS was compared between scoliosis and 

healthy control group. 

Results 

In healthy subjects, average SWS (all disc levels pooled) was 3.0 ± 0.3 m/s 

whereas, in scoliotic patients it was significantly higher at 3.5 ± 0.3 m/s (p = 

0.0004; Mann-Whitney test). Differences were also significant at all disc levels. 

No difference was observed between males and females. No correlation was 

found with age, weight and height.  

Conclusion 

Non-invasive shear wave ultrasound is a novel method of assessment to 

quantitative alteration of annulus fibrosus. These preliminary results are 

promising to consider shear wave elastography as a biomechanical marker for 

assessment of idiopathic scoliotic. 

http://www.springerlink.com/
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INTRODUCTION 

Adolescent Idiopathic Scoliosis is a three-dimensional spinal deformity of unknown etiology 

defined in the coronal plane by a Cobb angle of at least 10 ° and an axial rotation of the 

vertebrae [1] . Prevalence varies from 1 to 3%, pathogenesis and progression risk are not yet 

fully understood [2-4], although there reasons and risk factors for adolescent scoliosis are 

proposed [5]. The main challenge is to obtain a better understanding of these factors to 

establish the appropriate treatment [6-7].  

Numerous studies addressed changes of bone structures in scoliotic patients' spine [8-11], but 

only a few focused on intervertebral disc (IVD), although it probably plays an important role 

in the vicious cycle leading to curve progression [12]. Recent numerical simulation found a 

link between progressive scoliosis and a change in IVD mechanical properties [13]. In vitro 

analysis has shown that annulus fibrosus (AF) can lose its micro-structural integrity in 

scoliotic specimen at all disc levels [14]. However, existing means to characterize IVD in vivo 

are either irradiating [15]  or expensive, such as  magnetic resonance imaging (MRI) [16]. It is 

commonly accepted that scoliotic spines are stiffer than healthy spines, and that spines with 

larger deformations are stiffer than those with smaller curves [17]. Nevertheless, this stiffness 

might also be increased by other structures than the disc (para-spinal musculo-skeletal 

structures, muscular activation, etc.).  

Shear wave elastography is a non-invasive ultrasound-based method that allows quantitative 

measurement of soft-tissue mechanical properties. It determines the propagation shear wave 

speed (SWS) in the tissue [18], which is related to the tissue’s elastic modulus. Shear wave 

elastography  has been used in clinical practice to evaluate breast [19], liver [20], prostate 

[21] and muscle [22]. Recently, in vitro and in vivo studies were performed to establish SWS 

measurement feasibility and reproducibility in IVD or, more precisely, in the disc’s outer 

layer: the annulus fibrosus (AF) [23][24]. Those authors showed correlations between SWS 

and the mechanical properties of IVD, as well as in vivo reliability both in children and adults. 

A standardized, reproducible protocol was determined for the acquisition and processing of 

images for lumbar AF in healthy children and adolescents [25]. Measurements in scoliotic 

patients, however, are still lacking.  

Assessment of disc mechanical properties is of 

potential clinical interest for several reasons. For 

instance, disc properties could reveal to be a 

biomarker of progressive scoliosis at early stage and 

thus help the physician to adapt the patient’s 

treatment accordingly. Also, the difference of healthy 

IVD and pathological IVD mechanical properties 

could guide the decision of lower level 

instrumentation for spinal fusion.  

For this study, it was hypothesized that scoliotic discs 

should be stiffer than healthy discs and that SWS in 

the annulus fibrosus could detect this difference. 

The main aim of this study was to assess feasibility 

of disc SWS measurement in scoliotic adolescent 

patients and to determine the relevance of this 

technique by comparing SWS to a cohort of healthy 

subjects.  

Figure 1: Marking Aortic Iliac 

Bifurcation. a: aortic bifurcation; b: L4 

vertebrae; c: inferior vena cava 

http://www.springerlink.com/
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MATERIELS AND METHODS 

Subjects 

Data were collected prospectively from Trousseau university children’s hospital within 

follow-up clinical investigation. Parents and children were informed on the measurement 

protocol and consented to participating before inclusion. Then parents signed an informed 

consent, as approved by the ethical committee (C.P.P  Île de France IV: Records 14 409).  

Children between 10 and 18 years old were included. Healthy children were included in group 

A if they had no history of spinal disease.  A systematic clinical examination was performed 

by a spine surgeon to rule out any diagnosis of scoliosis for these subjects who were recruited 

at the trauma consultation. A pathognomonic scoliosis sign, a rib hump and other clinical sign 

like dorsal pain, asymmetry of the shoulders or pelvic asymmetry were assessed. Patients 

monitored for fractures of lower limb requiring support discharge were excluded. Scoliotic 

children were consecutively included in group S if they had a Cobb angle higher than 10° and 

a diagnosis of idiopathic scoliosis. Patients were considered progressive if major curve Cobb 

angle of more increased more than 6° between the first and the latest control, [26] and Cobb 

angle was between 25° and 50°. Treatment was a Charleston or Caen night time brace and all 

patients had been treated for a minimum of 3 months. Stable scoliosis was defined by a 

progression of major curve Cobb angle lower than 6° between the first and the latest control 

[26], a Cobb angle lower than 25° and a Risser stage ≥ 3 [5]. The first control was the first 

visit with surgeon at Trousseau hospital whereas the latest control corresponds to the last visit 

during the inclusion period, i.e. between November 2016 and April 2017.  Children with a 

transitional anomaly, antecedent connective tissue pathology or antecedent spine surgery were 

excluded from both groups.  

Weight, height and body mass index were measured for each subject. 

IVD SWS Acquisition Protocol 

SWS was measured in all included subjects following a previously described protocol for 

lumbar IVD of adolescents [25]. Measurements were performed with an Aixplorer 

(SuperSonic Imagine, France) and a superlinear 

Sl 10-2 probe. Subjects were in supine position 

and measurements were performed at disc levels 

L3-L4, L4-L5 and L5-S1. The level was 

determined by observing the aortic bifurcation 

(Figure 1) which, in numerous cases, 

corresponds to the L4 vertebrae [27]. The aorta 

or iliac arteries were followed up and down to 

find the IVDs.  IVD was clearly identifiable by 

the lamellae of the AF (Figure 2). Three clips of 

about 10 s (about 10 elastography frames per 

clip) were recorded for each disc when the signal 

appeared smooth and stable. A single operator 

was trained by a radiologist and performed 50+ 

SWS disc acquisitions before doing all the 

measurements for this study. The same operator 

Figure 2: Example of ultrasound of L4-L5 

annulus fibrosus. The arrow shows the 

concentric parallel lamellae. 

http://www.springerlink.com/
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also processed the data offline with 

custom software written in MATLAB 

(The MathWorks Inc., Natick, MA, 

USA), as previously detailed [25]. A 

region of interest (ROI) was manually 

defined over the AF [23] (Figure 3); the 

ROI was then semi-automatically 

tracked in the following images to 

always measure the same region in all 

images. The procedure was repeated for 

the three clips and the average SWS 

was calculated in each ROI to obtain a 

single SWS value (from 3 clips x 10 

frames = 30 images per disc) for a 

given subject and disc level. The 

average duration of acquisition was 10 

minutes for all three discs.  

Radiological exam 

Biplanar x-rays (EOS system, EOS 

imaging, Paris, France) [28] were 

acquired within normal clinical follow-

up of the scoliotic patients. 3D 

reconstruction of the spine was 

performed by a trained operator, which 

allowed measuring major curve Cobb 

angle [29]. Risser sign [30] was also 

determined, and the curves were classified according to Scoliosis Research Society 

recommendations. Junctional vertebral levels were determined by an experimented physician 

by noting a discontinuity of intervertebral axial rotation and high lateral rotation. 

Statistical Analysis 

SWS data was analyzed by disc level and by subject (i.e., pooling the three measured discs for 

a given subject). A normality corridor of healthy subjects was calculated as the range [5
th

 -

95
th

 percentiles]. Risk ratios were calculated by counting the number of progressive (P) and

stable (T) patients having a high (h subscript) or normal/low SWS (n subscript) compared to 

the normality corridor:  

𝑅𝑖𝑠𝑘 =
𝑃ℎ (𝑃ℎ + 𝑇ℎ)⁄

𝑇𝑛 (𝑇𝑛 + 𝑃𝑛)⁄

Differences between scoliosis and healthy groups were analyzed with Mann - Withney tests 

while differences between vertebral levels with Kruskal - Wallis tests. Correlations were 

quantified with Spearman’s rank correlation coefficient. Significance was set at 0.05. 

RESULTS 

Figure 3: Example of ultrasound (top frame) and 

elastography image (bottom frame) of L3-L4 annulus 

fibrosus. The white rectangle is the region of interest 

(ROI) in the annulus fibrosus. 

http://www.springerlink.com/
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Sixty adolescents (13.2 ± 2 years 

old; range 10 to 18; 43 girls and 

17 boys) were included and 

analyzed, for a total of 180 

lumbar IVDs (3 discs x 60 

inclusions). Subjects were 

divided in healthy group (A, 13 ± 

1.9 years old; range 10 to 16; 19 

girls and 11 boys) and scoliosis 

group (S, 13 ± 2 years old; range 

10 to 18; 24 girls and 6 boys, 

average Cobb angle 28.8° ± 

10.5°). The characteristics of the 

subjects are detailed in Table 1. 

Measurement was not possible in 

one healthy subject who could 

not completely relax his belly 

muscles, thus making it 

impossible for the probe to get 

closer to the disc. 

Healthy Group SWS 

Average SWS lumbar annulus fibrosus was 3.0 ± 0.3 m/s, range 2.3 to 3.7 m/s; values per 

level are detailed in Table 2. There was no significant difference between levels L3-L4 (range 

2.3 to 3.8 m/s), L4-L5 (range 2.0 to 4.0 m/s) and L5-S1 (range 2.2 to 4.4 m/s) (p = 0.7, 

Kruskal - Wallis test, Figure 4). 95% of the healthy subjects had a SWS between a normality 

corridor of 2.3 and 3.8 m/s. The difference in average SWS between girls (3.1 ± 0.4 m/s) and 

boys (2.9 ± 0.2 m/s) was not significant (p = 0.2, Mann - Whitney test). No correlation of 

SWS was found with age, weight, height or BMI (p > 0.05, Spearman’s test). 

Scoliosis Group SWS 

Thirty idiopathic scoliotic patients (13 ± 2 years old; range 10 to 18; 24 girls and 6 boys, 

average Cobb angle 28.8° ± 10.5°) were included. Among these children, there were twenty 

progressive scoliosis at pre-treatment stage (10 patients; 13 ± 2 years old, range 11 to 16; 8 

girls and 2 boys; average Cobb angle : 30,8° ± 9,3°, range 26,6 - 49,5°) or during treatment 

(10 patients; 13 ± 2.4 years old; range 10 to 16; 8 girls and 2 boys; average Cobb angle : 36,5° 

± 8,4°, range 25 - 48,6°) and ten stable scoliosis which were never treated (14 ± 1.5 years old; 

range 13 to 18; 8 girls and 2 boys; average Cobb angle : 19.1° ± 4,1°, range 12.7- 25°). All 

types of curves were represented and they were classified according to Scoliosis Research 

Society recommendations. The characteristics of the subjects are detailed in Table 1. 

Average SWS lumbar annulus fibrosus was 3.5 ± 0.3 m/s, range 2.7 to 4.8 m/s; SWS per disc 

level are detailed in Table 2. There was no significant difference between levels L3-L4 (range 

2.3 to 4.9 m/s), L4-L5 (range 2.0 to 4.7 m/s) and L5-S1 (range 2.5 to 5.0 m/s, p = 0.98, 

Kruskal - Wallis test, Figure 4).  

Figure 4: Box plots of average SWS for each level in Scoliotic 

patient (S) and Healthy adolescent (A). Upper and lower box 

range represent the upper and lower quartile. Whiskers show 

the highest and lowest values. The middle line in the box 

show the median value and the average is represented by the 

cross. Upper and lower dotted line represent the high and low 

normality corridor. 

http://www.springerlink.com/
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 There was a weak correlation between average SWS and BMI in the scoliosis group (p = 

0.04, Spearman’s rho = 0.4). No correlation of SWS was found with age, weight, height or 

Cobb angle (p > 0.05, Spearman’s test), nor any effect of Risser sign (p > 0.05).  

Average SWS in stable scoliosis was 3.3 ± 0.3 m/s, range 2.7 to 4.3 m/s whereas in 

progressive scoliosis average SWS was 3.7 ± 0.3 m/s, range 2.8 to 4.8 m/s (p = 0.06, Mann - 

Whitney test). In progressive scoliosis 

at pre -treatment stage SWS mean was 

4.0 ± 0.3 m/s, range 3.0 to 4.7 m/s 

while in progressive scoliosis during 

treatment SWS mean was significantly 

lower at 3.3 ± 0.3 m/s, range 2.8 to 3.7 

m/s (p = 0.01, Mann - Whitney test).  

Groups comparison 

SWS was significantly higher in 

scoliotic patients that in healthy 

subjects at all disc levels (p ≤ 0.02 for 

all levels) and when all levels were 

pooled (p < 0.001, Mann - Whitney 

test) (Figure 4 and Table 2). Figure 4 

also shows higher SWS variability in 

scoliosis group. No significant 

difference was observed between 

males and females at any level (nor 

with all levels pooled, p > 0.05). For 

the whole population pooled, no 

correlation of average SWS was found 

with age, weight and height.   

One AF out of ninety presented a 

SWS lower than the previously 

defined normality corridor, while 29 

AF (32 %) from sixteen patients had a 

SWS higher than the normality 

corridor. These abnormal values were 

evenly spread among all three 

vertebral levels, and they were not 

concentrated in specific patients, i.e., 

only five patients had all three discs 

characterized by an abnormally high 

SWS. These five patients had an 

average Cobb angle of 32.1°, so not 

much different from the population’s 

average, but they were all 

characterized by a progressive 

scoliosis.  

Of the sixteen patients with 

Table 1 : Characteristics of Subjects

Healthy 

Subjects 

Scoliotic 

Subjects 

 n = 30 n = 30 

Age (yo) 

    Range 10 - 16 10 - 18 

    Mean ± SD 13 ± 1,9 13 ± 2 

Gender 

    Boys 11 6 

    Girls 19 24 

Height (cm) 

    Range 1,3 - 1,8 1,3 - 1,8 

    Mean ± SD 1,6 ± 0,1 1,6 ± 0,1 

Weight (kg) 

    Range 35 - 73 21 - 65 

    Mean ± SD 48,4 ± 11,8 45,8 ± 9,4 

B.M.I 

    Range 12,6 - 27,6 13,3 - 23 

    Mean ± SD 19 ± 3,2 18,1 ± 2,6 

Risser 

    ≤ 2 12 

    ≥ 3 18 

Cobb Angle 

Major Curve (°) 

    Range 12,7 - 49,5 

    Mean ± SD 28,8 ± 10,4 

Types of Curves 

    Main thoracic 6 

    Main Thoracolumbar 7 

    Main Lumbar 6 

    Double major 7 

    Triple major 4 

http://www.springerlink.com/
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abnormally high SWS, 60 % belonged to the progressive scoliosis group while 40% to the 

stable group. This corresponds to a risk ratio of 1, given the different cohort sizes of stable 

and progressive groups; therefore, high SWS was not associated with increased risk of curve 

progression, unless several discs had high SWS.  

Lower junctional levels were within the three measured disc levels in six patients of the 

progressive scoliosis group and nine patients of the 

stable group. In progressive scoliosis, five out of six 

SWS values (83%) were above the normality corridor 

whereas only two out of nine SWS values (22%) of were 

higher than normality corridor in stable scoliosis. This 

corresponds to a risk ratio of 4.6. In other words, 

abnormally high SWS in lumbar discs does not 

necessarily correspond to an increased risk of 

progression, unless several discs or a junctional disc 

show abnormally high SWS. 

DISCUSSION 

Results of the present work showed higher SWS in scoliotic lumbar disc than in healthy 

subjects in L3-L4, L4-L5 and L5-S1. These results confirm that there are biomechanical 

changes in AF in scoliotic patients. Moreover, SWS increases with the tissue’s elastic 

modulus, suggesting that scoliotic discs are stiffer than healthy ones, as initially hypothesized. 

It was also hypothesized that SWS should increase with deformation severity, but no 

correlation was observed between SWS and Cobb angle. Huber et al. [31] reported that 

degeneration of IVD is greater within the curvature than in healthy areas, so it is possible that 

this lack of correlation, in our study, is due to the pooling of different spinal topologies. 

The present work represents the first application of shear wave elastography to characterize 

the mechanical properties of lumbar disc in scoliotic patients. This work stemmed from the 

conception that scoliotic spines are stiffer than healthy ones; therefore, disc stiffness might 

represent a biomarker related to scoliosis. Although MRI elastography has allowed to 

quantify the mechanical properties of IVD in vitro [32][33] and in vivo [16] , ultrasound 

elastography seemed a good candidate for routine use in clinical setting. Indeed, SWS 

measure is a simple, fast, accessible, reproducible [25]  and non-invasive method of IVD 

assessment with a fast learning curve. Given the heterogeneous character of the medium 

crossed by the ultrasound waves (i.e., the intestines) and the relative depth of the SWS 

measurement (about 2-3 cm), the resulting SWS maps appear noisy and contain artefacts 

(Figure 3). Repeated measurements (30 images per disc in the present study) are necessary to 

guarantee an inter-operator reproducibility of 8.7% previously obtained in vivo [25]. The 

measurement is fast so this does not significantly impact the examination time, and the image 

processing can be performed afterwards. To obtain a clear image, the operator should not 

hesitate to replace the probe several times and apply constant pressure to move the intestines 

and their contents. The probe should also be carefully aligned with the IVD plane. Depth of 

measurement could have an effect on the observed SWS. While this parameter was not 

controlled, the probe can usually be pushed to 2-3 cm from the disc, even in older subjects 

(i.e. 18 years old). Besides, the previously cited reproducibility values were obtained without 

controlling for depth either. 

Table 2: Differences in SWS 

Scoliotic vs Asymptomatic; Mann-

Whitney test: 

Level P - Value 

All levels 0.00039 

L3-L4 0.0022 

L4-L5 0.02 

L5-S1 0.0039 

http://www.springerlink.com/
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IVD is composed of three regions: annulus fibrosus, the transition zone and nucleus pulposus 

[34]. AF is organized in concentric arrays of parallel lamellae composed of collagen and 

elastin [34]. This elastic fiber networks becomes denser with aging [34]. Yu et al. [13] 

reported that in scoliotic patients the elastic fibers were sparse and the collagen and elastic 

fiber networks were disorganized and loss of lamellar structure. Kobielarz et al.[35] 

confirmed this alteration and reported that the number of elastin fiber and collagen I were 

reduced in AF. In vivo, Huber et al. [31] showed by MRI that IVD were more degenerated in 

scoliosis than healthy IVD whereas Schlösser et al. found by CT scan analysis that 

deformation in 3-D was greater in the IVD than in the vertebral bodies [15].   

Shear wave elastography could be an aid for the detection of progressive scoliosis. SWS was 

lower for the stable scoliosis group than for the progressive scoliosis. Moreover, SWS at 

junctional level was in 83% discs higher than the normal corridor in progressive scoliosis, 

with an increased risk ratio of 4.6 relative to stable scoliosis. Although these results should be 

confirmed on a larger cohort, they are very promising for the early detection of progressive 

patients. Recently, a severity index (S-index) consisting of a combination of quantitative 3D 

geometrical parameters was proposed to estimate the risk of scoliosis progression at early 

stage [5]. The initial results showed a sensitivity of 89% and a specificity of 84% when 

detecting progressive and stable scoliosis.  Four of the six geometrical parameters utilized in 

that work are related to the axial plane: curve torsion, axial rotation of the apical vertebra and 

inter-vertebral axial rotation at the two junctional vertebral levels. This underlines the 

importance of the disc and of its torsion in the progression of scoliosis, thus further justifying 

the need of biomechanical IVD characterization. 

Shear wave elastography could also be an aid for the surgical planning. In preoperative, side-

bending radiographic images are commonly used to classify the curves according to their 

topology and flexibility, and to help choosing the vertebral level for instrumentation [36]. In a 

structural lumbar curve, the choice of the lower level remains debated and not consensual 

despite various factors like last touch vertebrae or neutral vertebrae [37] or the first mobile 

IVD on side bending images [36]. SWS measurement could be one more factor for 

distinguishing the first healthy lumbar IVD and the pathological lumbar IVD. In the present 

work, SWS mean was lower in progressive scoliosis during treatment than progressive 

scoliosis at pre-treatment stage. The treatment by brace can induce structural changes of the 

IVD [38] following to the desired correction. But no study allowed quantifying changes in 

biomechanical properties in IVD after brace treatment. These results should be validated on a 

larger cohort. 

SWSs in the healthy group were close to results found in a previous previously study on a 

different cohort [25]. The average SWS reported was 2.9 ± 0.5 m/s (range 1.8 to 3.9 m/s) in 

31 healthy children aged 11 ± 3 years old, against 3.0 ± 0.3 m/s in the present work. As in the 

present results, those authors did not find any significant differences between girls and boys 

or any correlation of SWS with subjects’ age, weight or height. It can be noticed that 

measurement in the present study were performed on more levels than L3-L4. 

This study had some limitations: first, a larger cohort is needed to assess the impact of the 

brace on IVD SWS and to carry out an analysis according to the different types of spine 

morphology. Second, the operator only has access to the last three or four mobile IVDs and to 

the anterior part of annulus fibrosus. SWS could not be measured in the thoracic IVDs and 

measurement position was not controlled relative to the concave or convex part of the 

curvature. Also, the anatomical landmark used to detect the vertebral level, i.e. the aortic 

bifurcation, corresponds to the L4 vertebra only in 64% of the subjects, thus introducing a 

degree of uncertainty on the level being measured. Nevertheless, having access to the 

http://www.springerlink.com/
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adolescent’s frontal radiography can help recognize the disc level by comparing lumbar spinal 

topology with the position of the vertebrae as observed during ultrasound examination. Third, 

they were no radiological confirmation of absence of scoliosis or absence of transitional 

anatomy in control subjects. Nevertheless, for those patients that had lumbar curves, a lateral 

displacement of the spine relative to the abdominal wall was clearly visible (Figure 1). 

Finally, measurement inter-operator reproducibility was not tested in this study, although the 

same protocol was used from previous work where measurement reliability was determined. 

Despite these limitations, non-invasive shear wave ultrasound elastography proved to be a 

feasible, fast, and reliable means of quantifying disc mechanical properties, and, most of all, it 

resulted sensitive to the biomechanical alteration of AF in scoliotic patients. In particular, 

results suggest that a junctional vertebra with high SWS could be associated with an increased 

risk of scoliosis progression. Therefore, ultrasound elastography has the potential of being a 

novel early biomarker of progressive scoliosis, and it could be included in routine use in 

clinical setting since it is not invasive, fast and accessible. These preliminary results open the 

way for larger studies aiming at confirming these findings.  
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