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Abstract -- This paper analyses the copper losses due to the 

homopolar current of a five-phase open-end winding machine 

supplied by a 10-leg inverter and a single DC voltage source. 

This topology can have non-null high frequency homopolar 

current components that can increase the machine’s copper 

losses and result in overheating of the motor phase windings . 

Accordingly, different modulation strategies are compared with 

the goal of reducing the homopolar current and, consequently 

the resulting copper losses. The comparison study is achieved 

using Matlab/Simulink and a finite element model in order to 

evaluate these losses. 

Index Terms-- Eddy currents, Homopolar current, Integrated 

drive,  Multiphase  Permanent  Magnet Synchronous  machine 

(PMSM), Open-end winding, Proximity effects, Pulse width 

modulation (PWM), Skin effect, Space vector pulse width 

moduation (SVPWM).  

I.   NOMENCLATURE 

MM Main Machine 
SM Secondary Machine 
HM Homopolar Machine 
R Phase Resistance 
Lp Inductance of Main Machine 
Ls Inductance of Secondary Machine 
Lh Inductance of Homopolar Machine 
VDC DC bus voltage 

II.   INTRODUCTION 

NTEGRATED drive main advantage is its potential high 
power drive density, especially because only one thermal 
cooling system is used for the machine and the Voltage 

Source Inverter (VSI). Other advantages are observed for this 
kind  of drive such as  elimination of AC cables, a better 
Electromagnetic Compatibility and  a simplified packaging 
for use in complex systems such as hybrid automotive [1]-[7]. 
Otherwise, the main concerns of this drive architecture are the  
thermal constraints, especially for the most delicate 
components of the drive such as the Si transistors and the 
magnets [1], [4]. With wide-gap transistors SiC or GaN with 
maximum temperature of the same order as the windings,  this 
constraint should be reduced in the future [1], [3]-[7]. 
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 Nevertheless, it is likely that transistors fault occurrence 
will be higher than in the classical drives. This is the reason 
why fault tolerance of the drive is particularly interesting 
especially in transportation. As consequence, the multiphase 
machines are interesting candidates for the integrated drives 
[1], [3], [8], [9].  
 When the VSI-legs are inside the machine, the open-end 
winding drives is no longer a structure which increases the 
complexity of the external connections. On contrary, for an 
imposed DC bus voltage such as 48V, , the open-end 
windings solution allows to reduce the copper losses in 
comparison with a standard Y-connected drive, since in this 
case,  the voltage on the windings is almost multiplied by two 
for a given power. Nevertheless, the open-end winding 
structure allows also the circulation of an homopolar current 
[10].  
 The homopolar currents are the common mode components 
that generate a  pulsaing torque (null average  torque), 
generating mostly copper losses. Supplying the machine with 
a null homopolar voltage does not ensure that the homopolar 
current is null. Low frequency homopolar current components 
can be generated by the rotor saliency of a permanent magnet 
rotor. In this case, the homopolar frequency currents (which 
order is a multiple of the number of phases) are coupled to 
the fundamental frequency current, the one that is controlled 
for torque generation. A high-frequency homopolar current 
component is also mostly generated by the non-linearity of 
the inverter. This shows why an homopolar current 
component is usually obtained  at the switching frequency, 
even if its value is not a multiple of the number of phases 
[11]. 
 The high-frequency homopolar current might generate 
more losses per Ampere due to the skin and proximity effects 
[14] respectively proportional to the frequency or its square. 
In an experimental set-up with a five-phase Permanent 
Magnet Synchronous Machine (PMSM) equipped with 
temperature sensors, the authors have verified that with 
different PWM modulation strategies, the winding 
temperatures can be, for a given torque and speed, multiplied 
by two in comparison with classical star coupling. This is the 
reason why this study compares different modulation 
strategies aiming to reduce the high frequency homopolar 
current. Thereafter, the copper losses for each modulation 
strategy are calculated using a finite element model allowing 
to take into account skin and proximity effects and then 
compared to a reference star-connected PMSM in which the 
homopolar current is null.  

Section 3 presents the multiphase system under 

investigation. Section 4 describes the chosen modulation  
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Fig. 2. Configuration of the open-end winding five-phase PMSM topology 

supplied by two 5-leg inverters and a single dc voltage source. 

 

strategies which are analyzed. Section 5 presents the 

simulation results with a comparative analysis of the 

investigated PWM strategies based  on the obtained results of 

the finite element losses analysis. 

III.   SYSTEM AND CONTROL'S DESCRIPTION  

 The considered topology in this  study  is shown in Fig. 2. 
It consists of two five-leg inverters VSI1 and VSI2, single DC 
voltage source and a five-phase open-end windings PMSM. 
The machine parameters are given in Table 1. The 
performance analysis is achieved in comparison to the 
reference topology using a five-phase star-connected 
machine, as depicted in Fig.3.  

The multiple reference frame concept has been successfully 
applied to the multiphase drives to deduce a simple control 
scheme [12]. Based on this representation, it is possible to 
consider the five-phase PMSM as a set of two fictitious 
magnetically independent two-phase machines (main machine 
(MM) and secondary (SM)) and one fictitious homopolar 
one-phase machine (HM). Each equivalent fictitious machine 
(respectively, MM, SM and HM) is α-β frame, x-y frame and 
h frame). These frames are obtained by applying the linear 
Concordia transformation given in (1).  
 For the system under study, it is assumed that the 
electromagnetic torque is produced only by the low order 
harmonic components (1st and 3th harmonics). Consequently, 
the α-β current components are supposed to be sinusoidal. On 
the contrary, the x-y current components are supposed also to 
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Fig. 3. Configuration of star-connected 5-phase PMSM topology. 

 
the contrary, the x-y current components are supposed also to 
exist since they can contribute for the torque production in the 
five-phase PMSM, when the back electromotive forces 
(Back-EMF) are not sinusoïdal. Taking this into account, 
those two bi-dimensionnal subspaces are independently 
controlled by PI controllers, as shown in the control scheme 
of Fig. 1. 
  The homopolar current component ih cannot generate a 
constant non-null torque. Because of that, this frame will be 
supplied by a null voltage reference. In practice, this does not 
ensure that the  homopolar current is always null. As 
mentioned in the introductionrotor saliency and inverter’s 
non-linearity can generate low and high frequency homopolar 
currents. Homopolar component would be null if there were 
two isolated electric sources supplying each inverter. 
However, industrial applications may impose only one 
electric source because of cost or technical issues due to the 
isolation of the two electric sources. 

IV.   INVESTIGATED MODULATION STRATEGIES  

 For the open-end wind five-phase PMSM under study, four 
modulation strategies were chosen to be analyzed. Three of 
them are classified as  intersection modulation strategy in 
which the PWM signal is generated by comparing a reference 
voltage to a triangle carrier signal at switching frequency. The 
fourth strategy is a space vector PWM (SVPWM) strategy in 
which a combination of 8 voltage vectors is chosen to 

 
Fig. 1. Control and co-simulation scheme. 

 



  

generate the PWM signals at each switching period, as it is 
explained further in  this section. 
    A voltage vector is composed by the instantaneous voltage 
of the machine phase. As the studied system is a 5-phase 
open-end winding machine, this vector has 5 dimensions and 

each phase can be supplied by DCV , 0V and DCV . 
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TABLE I 

PARAMETERS OF THE USED FIVE-PHASE MACHINE 

Technical data 
Sinusoidal 

PMSM 

Resistance R (Ω) 0.0011 

Inductance Lp (µH) 118.5 

Inductance LS (µH) 51.4 

Inductance Lh (µH) 110  

Number of pole pairs p 7 

Fundamental harmonic E1 at 1rd/s  (V) 0.1358 

Third harmonic amplitude in (%) of E1 10 % 

five harmonic amplitude in (%) of E1 1.1 % 

 
Those voltages depend on the state of the two inverter legs 
that supply the same phase. For an example, to supply motor 
phase a with +VDC the transistors T1 and T16 must be closed. 
In order to supply a phase with 0V either upper transistors or 
bottom transistors of the two inverter legs supplying the same 
phase must be closed. In conclusion, 243 (35)  voltage vectors 
are possible. 

A.    Two-level PWM strategy 

 The principle of this strategy is given in Fig. 4. It consists 
in giving inversed PWM signals to two inverter legs 
supplying the same phase. In this case, the phase voltages will 

be either DCV  or DCV , reducing to 32 (
52 ) the possible 

voltage reference vectors. Using the Concordia 
Transformation, it is possible to see that all 32 vectors have a 
non-null projection on the homopolar frame  .  

B.   Three-level PWM simple modulation strategy  

 In comparison to the 2-level strategy, this one uses two 

triangle carrier signals, one for the positive voltage values and 

another to the negative values (Fig. 5). It reduces by almost 

half the number of commutations, which also generate losses 

in the inverter, but this aspect is not analyzed in this paper. 

Furthermore, all 243 vectors are used in this modulation 

strategy. The advantage of this strategy is the fact of using 

voltage vectors which the homopolar voltage is low or even 

null and also vectors which value is closer to the 

referencevoltage vectors one. For example, if the reference 

vector is [0.1 -0.5 0.9 -0.7 0.3] VDC , a combination of the 

vectors as [0 -1 1 -1 0]VDC and others can be used in order to 

obtained reference voltages. 

Fig. 4. 2-level PWM Strategy 

Fig. 5. 3-level PWM simple modulation 

Fig. 6. 3-level PWM double modulation strategy 

 
Fig.  7. Z-SVPWM Strategy. Chosen four vectors projection in α-β and x-y 

frames. 

C. Three-level PWM double modulation strategy  

   This strategy is similar to the previous one. There are also 
two triangle carrier signals, the first one is the same of the 2-
level PWM and the second is its mirror (Fig. 6). As the 3-
level PWM simple modulation strategy, all 243 vectors are 
used. But, there are as many commutations as the 2-level 
PWM strategy.  
 

 

 
 



  

D.     Eight-vector Z-SVPWM strategy 

 The 8-vector Z-SVPWM strategy (Fig. 7) is the most 
complex one since it involves only some specific vector of the 
possible 243 ones to supply the machine. Many criterions can 
be used to select the vectors that will be implemented. In this 
study, as the homopolar current is the main issue, the select 
vectors are the ones which the homopolar projection is null. 
51 vectors correspond to this criterion. By only using these 
vectors, the homopolar current is theorically null. 
 Analyzing the select vectors in the α-β frame, it is possible 

to see that 10 vectors ( lV ) have the highest amplitude (1,94 

DCV ), allowing to supply the phases with a higher voltage. 

However, those 10 vectors have a non-null projection on x-y 

frame. This might generate a torque ripples, because the third 

harmonic of the Back-EMF is not null. That is why 10 other 

vectors ( sV ) will be also used in order to compensate the 

voltage projection on x-y frame. 

 Being chosen the 20 vectors that will be used to supply the 
machine, the modulation strategy will work as follows: with 
the voltage reference projection on the main subspaces the 
four closest vectors will be used to generate reference vector 
projection. Then every vector will have its own activation 

duration ( 1lT , 2lT , 1sT and 2sT ) respecting the equation (2): 
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   In order to compensate the projection of the vectors on x-y 
frame, the relation of the equation (3) must be respected. 
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This is made for the four vectors that will generate the 

voltage reference on the α-β frame. With the same principle, 

four other vectors will be chosen to generate the voltage 

reference on the x-y frame, totalizing thus eight vectors as 

indicated in the strategy name.  

For every commutation period the activation durations of 

all eight vectors must be recalculated. 

 

V.   CO-SIMULATION RESULTS AND COMPARISON 

    This section presents a summary of the main co-

simulation results conducted on the finite elements (FE) co-

simulation software presented in Fig. 1. The simulation 

software has been set up by using Matlab/SimuLink. 

Regardless the used modulation technique, the motor-inverter 

set has been modeled with a toolbox model of the power 

switches and of the by-pass diodes with data from the 

supplier. A dead time of 1 µs has been introduced to prevent 

supplier. All tests have been carried out in permanent 

operating conditions.  

    The obtained motor phase currents derived from 

Matlab/SimuLink have been then used to fed a FE model 

(ANSYS Maxwell 2D) of the five-phase machine, generating 

thus the losses  density map of the  machine. The parameters 

of the five-phase PMSM are given in Table. I.  

A.   Machine control simulation 

Simulations are carried out for every modulation strategy 
for a 1000 rpm as rotation speed. The delivered torque is  20 
N.m and the resulting  power is 2.1 kW   . The fundemental 
frequency is of 116 Hz and the third harmonic of 350 Hz. The 
results are depicted on Fig. 8 to Fig. 13. As annouced above, 
the aim of this work is to apply a modulation technique for 
the five-phase PMSM giving the same harmonic components 
as those obtained for a star-connected PMSM, as depicted in 
Fig. 8.   

Considering open-end windings configuration, for each 
modulation strategy, high frequency components (at 
switching frequency) are visible on the motor phase currents 
but the highest values are obtained for a 2-level PWM 
strategy, as illustrated in Fig. 9. These results are in 
accordance with previous addressed works in this subject. In 
fact, the harmonic content of the current presents high 
frequency components at the switching frequency (10kHz) 
with an amplitude of 14% compared to the fondamental 
current amplitude.  

Regarding the two 3-level strategies (simple or double 
modulation), the double modulation has the lowest high-
frequency components. Moreover, the double modulation 
induces high-frequency components at the double of the 
PWM switching frequency. 

Even if the Z-SVPWM has theorically the best 
performance regarding high frequency homopolar 
components supression, it is not what is obtained in 
simulation with an almost perfect VSI. This happens mostly 
because of the low activation duration of the vectors  
controlling the current in the x-y frame and the transistors 
dead-time. As a consequence, some low-frequency harmonics 
appear. 
By analyzing the time-domain waveforms of the homopolar 

currents (see Fig. 13) for each modulation strategy, the 

observations above are confirmed. The 2-level PWM strategy 

is the one presenting the highest value of the homoplar 

current compoenent at switching frequency. However, the 

next analysis will verify if the two 3-level PWM strategies are 

already effective enough on heat dissipation reduction. It 

should be highlighed that the temperatures experimentaly 

obtained in the different windings with both 3-level PWM 

strategies are of the same order as the ones obtained with a 

star connection topology. 



  

 
Fig. 8. Obtained current of phase A and its reference, with the current 

harmonics spectrum for star-connected 5-phase PMSM. 

 
Fig. 9. Obtained current of phase A and its reference, with the current 

harmonics spectrum for 2-level PWM. 

 
Fig. 10. Obtained current of phase A and its reference, with the current 

harmonics spectrum for 3-level simple modulation. 

 
Fig. 11. Obtained current of phase A and its reference, with the current 

harmonics spectrum for 3-level double modulation. 

 
Fig. 12. Obtained current of phase A and its reference, with the current 

harmonics spectrum for 8-vector Z-SVPWM. 

 
Fig.  13. Homopolar current obtained for each modulation strategy. 

B.   Finite Model co-simulation 

The obtained currents from simulation stage are introduced 
to the FE model using ANSYS Maxwell software.  

As the low-frequency harmonic components have really 
low impact on skin and proximity effects [13]-[15] in the 
motor phase windings, their RMS values are used instead. 
The FE simulation is achieved over two PWM periods.  The 
obtained results regarding the copper losses cartographies are 
illustrated on Fig. 14 to Fig. 19. The average copper losses in 
all windings of the five-phase PMSM are depicted in Table. 
II.  

From the obtained results, as expected, the high 
frequency homopolar current components result in a 
copper losses increase of almost 50% in the case of the 2-
level PWM strategy applied in comparison to the star-
connected PMSM considered as a reference basis. The two 
other strategies (3-level simple modulation PWM and Z-
SVPWM) have similar behavior concerning the copper 
losses, which are about 27 % higher than those obtained 
with the star-connected PMSM, as summarized in Table. 
II. On the contrary, copper losses obtained for the 3-level 

double modulation PWM is similar to the ones obtained 
with the star connected five-phase PMSM. 

 
 Regarding the efficiency, the 3-level simple modulation 
PWM and the Z-SVPWM have the same efficiency (96.7%) 
since they have the same level of copper losses as observed in 
Table II. The 3-level double modulation has the higher 
efficiency (97.2%) since the copper losses are the lowest.  On 
the contrary, the  2-level PWM  strategy has the worst 
efficiency (96%) among the studied strategies, since the 
significant level of  losses in windings.  
Beyond this, there are other particular effects that must be 
taken into account for analysis like as the skin and proximity 
effects. As expected by the FE model, the results illustrated in 
Fig. 14 to Fig. 18 allow the visualization of high copper 
losses (almost 6 times more) located at the coils conductors 
close to the rotor. Consequently, this can result in hotspots 
formation in such conductors. In Fig. 19, the normalized 
copper losses in some rotor-side conductors in the coils are 
given for the four PWM strategies. It is observed that are the 
most impacted by the proximity effect and have the majority 
of contribution in the overall copper losses.  



  

 
Fig. 14. Copper losses cartography for the star-connected configuration. 

 
Fig. 15. Copper losses cartography for 2-level PWM strategy. 

 
Fig. 16. Copper losses cartography for 3-level simple modulation PWM 
strategy. 

  
     In future works, the thermal behavior of the five-phase 
PMSM for each strategy will be investigated, in order to   
prove the variability of the given conclusions here.  
 

VI.   CONCLUSION 

If open-end windings machines are attractive for integrated 
drives, it appears that important losses due to high frequency 
homopolar current components can be induced. In this paper, 

 
Fig. 17. Copper losses cartography for 3-level double modulation PWM 
strategy. 

 
Fig. 18. Copper losses cartography for Z-SVPWM strategy. 

Conductor number

 
Fig.  19. Comparison of the copper losses in coil conductors at the rotor-side 

of motor phase windings for four modulation strategy. 

  different modulation strategies are compared in order to 

reduce the copper losses.  The 2-level PWM strategy is the 

one presenting the highest dissipation among all strategies. In 

order to simplify the modulation, this strategy reduces the 

number of voltage vectors supplying the machine without 

taking into account the homopolar current generation. The  



  

TABLE. II 

AVERAGE COPPER LOSSS PER TOPOLOGY AND PER MODULATION 

STRATEGY FOR THE FIVE-PHASE PMSM 

Topology Modulation 

Strategy 

Total copper 

losses (PU) 

Motor 

efficiency(%) 

 

Star-connected   
1.0 

 

97.2 

Open-end winding 

2-level PWM ≈1.5 96 

3-level PWM 

simple 
modulation 

≈1.27 

 

96.7 

3-level PWM 

double 
modulation 

≈1.0 

 

97.2 

8-vector Z-

SVPWM 
≈1.27 96.7 

 

other three strategies present similar results with copper 
losses very similar to the ones obtained for a star-connected 
machine. The lowest homopolar current is obtained when the 
3-level PWM with double modulation is applied. The double 
modulation generates harmonics on a frequency that is the 
double of the commutation frequency of each transistor. Even 
though the Z-SVPWM strategy theoretically eliminates the 
homopolar current, in practice this strategy is very sensitive 
to effects as the transistor’s dead-time, for example. 
Consequently, low and high frequency harmonics might 
appear increasing then the copper loss 
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