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Ductility, defined as the strain at the onset of necking, has been characterized in thin Al films using an on-chip, internal stress
actuated, microtensile testing setup. In the smallest specimens, the ductility is equal to 0.08 and 0.27 for 200 and 375 nm thick films,
respectively, while the average strain-hardening exponents are, respectively, equal to 0.11 and 0.23. In addition to the thickness
effect, ductility decreases with increasing specimen size due to imperfection sensitivity, involving a size-dependent statistical
behaviour.
� 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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The ductility of thin metallic films is an impor-
tant property in a variety of microsystems and coating
applications. In flexible electronic devices, stretchability
is essential for preserving electrical conductivity under
large mechanical distortions [1–3]. In thin functional
coatings, the material layer must be sufficiently ductile
to sustain forming operations performed after deposi-
tion or to resist scratching or thermal loadings [4]. Mi-
cro- or nanoelectromechanical devices often involve
thin metallic films that are either freestanding or lying
on the substrate, and which might undergo moderate
straining during operation or manufacturing [5,6]. In
microelectronic devices, large strains in interconnects
can result from severe thermal cycling and associated
internal stress evolution [7]. In all these applications, a
limited permanent deformation is sometimes tolerated,
but without the occurrence of plastic localization or
damage, in order to preserve the desired function.

Ductility is the capacity for a material to deform
without cracking. Two main mechanisms limit the duc-
tility of metals. The first is the occurrence of plastic

localization by geometric necking or material instability.
The strain corresponding to the onset of plastic localiza-
tion is denoted here as eu. The second mechanism limit-
ing the ductility is the accumulation of damage by
nucleation, growth and coalescence of microvoids or
microcracks. This paper essentially focuses on the resis-
tance to plastic localization of thin films. The term “duc-
tility” is thus defined, in the present context, as the strain
corresponding to the onset of necking, which is often
smaller than the true fracture strain.

Ductility in thin metallic films is known to be weaker
than in the bulk counterpart (see a selection of refer-
ences in which the ductility of metallic films is typically
smaller than a few percent [8–10]). A similar loss of duc-
tility is observed in bulk nanostructured materials (e.g.
[11]). Similar to bulk nanocrystalline metals, thin films
involve small grain sizes, but other specific phenomena
related to the dominant presence of the surface are ex-
pected to play a major role. Indeed, some or even most
of the dislocations can escape from the film (depending
on the morphology and number of grains over the thick-
ness, and on the presence of a possible surface oxide
layer), thus limiting the strain-hardening capacity. Fur-
thermore, it is important to remember that imperfec-
tions significantly affect the ductility of plastically
deforming solids [12] and that the magnitude of typical
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imperfections can be expected to be larger in thin films
compared to macroscopic samples. In the literature
there are also examples of thin metallic film systems
involving large ductility, associated, for instance, with
high rate sensitivity triggered by grain growth mecha-
nisms [13,14] or due to delocalization effects resulting
from the presence of a soft underlying substrate [1–3].

In this paper, the resistance to plastic localization of
freestanding Al films with thicknesses of 200 and
375 nm is investigated experimentally using a novel ded-
icated lab-on-chip tensile testing technique. The analysis
focuses primarily on the observed wide scatter in the
ductility, which is dependent on the specimen size and
thickness, a topic which has not received any attention
in the literature to date.

The tests were performed using a novel internal stress-
driven lab-on-chip mechanical testing technique de-
scribed in detail elsewhere [15]. The fabrication process in-
volves the deposition of three layers on top of a silicon
wafer. The first layer is a 1 lm thick silicon dioxide film
deposited by plasma-enhanced chemical vapour deposi-
tion. This film acts as a sacrificial layer. The second layer
is a 250 nm thick silicon nitride film deposited at 800 �C by
low-pressure chemical vapour deposition, which provides
approximately 1 GPa of internal stress. The high level of
stress essentially comes from the thermal expansion mis-
match between the silicon wafer and the silicon nitride.
The third layer is made of a 200 or 375 nm thick film of
pure Al deposited by e-beam evaporation; the grain size
was measured on cross-sections by transmission electron
microscopy (TEM) and was equal to�150 and�200 nm,
respectively. The silicon nitride and aluminium layers are
patterned by photolithography (see Fig. 1a and Ref. [15]).
Dissolution of the underlying sacrificial layer is per-
formed with 73% concentrated fluorohydric acid (HF),
in order to release the two other layers from the substrate.
The high tensile internal stress present in the second film,
called the actuator, can now relax and, owing to its con-

traction, leads to deformation of the third film, called
the specimen. Note that the deformation is occurring in
the presence of HF and hence, in principle, without any
oxide on the surface of the specimen (which is important
regarding the potential effect of the surface oxide to act
as a barrier to dislocation motion with an impact on the
hardening behaviour). The contraction of the actuator
imposes a displacement u on the Al specimen. The stress
and strain in the test specimen can be determined from
the measurement of u, as explained hereafter. Several
samples are needed to generate a full stress–strain curve
up to large strains. Large or small strains are obtained
using long or short actuator lengths and short or long
specimens, respectively. In the current design, the total
length of the test structure (specimen and actuator) is
equal to 0.5, 1, 1.5 or 2 mm, with different width ratios be-
tween the actuator and the specimen, i.e. 15/10, 15/8, 15/
6, 15/4, 15/2, 15/1, 10/8, 10/6, 10/4, 10/2 and 10/1 (in lm).

The determination of the strain in the test specimen
requires accurate measurement of u as well as of the
dimensions and internal stress in the test material. As
shown in Figure 1a–c, cursors have been designed on
all test structures. The displacement u between the mov-
ing and fixed cursors is measured by scanning electron
microscopy. Several cursors are introduced in order to
repeat the measurements and improve the accuracy.
The total strain in the specimen is the sum of the
mechanical strain, emech, and the mismatch strain, emis,

etotal ¼ emech þ emis ¼ ln
L0 þ u

L0

� �
ð1Þ

where L0 is the initial length of the specimen. The length
L0 is imposed by the design of the mask used for the
photolithography, which has an error of less than
0.5 lm. The length of the specimens being always larger
than several tens of micrometers, this error is negligible.
The repeated measurements of u at high magnification
lead to an absolute error of less than 50 nm. The mis-
match strain emis is the most difficult parameter to mea-
sure accurately. Many types of standard test structures
[15–18] have been integrated in the lab-on-chip to
cross-check the mismatch strain values. In the present
Al films, the internal stress is very small (only a few
MPa) and the mismatch strain is thus ignored, i.e.
emis = 0. The relative total error on the strain is smaller
than 5% for the longest specimens and decreases with
increasing deformation to reach values below 1–2% for
the specimens reaching fracture (i.e. specimens reaching
strains larger than typically 0.02–0.03 and sometimes
much larger; see further below). The stress in each spec-
imen can be calculated, based on load equilibrium, as
(see Ref. [15] for details)

r ¼ Ea
Sa

S
�emis

a � ln
La0 þ u

La0

� �� �
ð2Þ

where Ea is Young’s modulus of the actuator material,
Sa and S are the cross-section areas of the actuator
and specimen, respectively, emis

a is the mismatch strain
of the actuator, measured with the same techniques as
for emis, and La0 is the initial length of the actuator.
The extraction of the stress is subjected to larger errors
than for the strain. The error analysis regarding r, which
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Figure 1. Suite of self-actuated tensile testing stages: (a) elementary
tensile testing stage before release; (b) after release; (c) suite of tensile
stages; and (d) true stress–true strain curves for 200 and 375 nm thick
Al films.
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is not a central quantity for the present study, is dis-
cussed elsewhere [15].

Plastic localization is observed in specimens deformed
to sufficiently large strains. When plastic localization sets
in, the extra overall displacement required to reach failure
is small. Hence, due to the discrete nature of the test tech-
nique, specimens most often either fail or deform uni-
formly. Nevertheless, specimens with necking can
sometimes be observed, such as in Figure 2 for 200 nm
thick, 4 lm wide Al specimens. Figure 2a shows a diffuse
necking process over a length scaling with the specimen
width. At larger strains, a more localized necking mecha-
nism develops that resembles a shear band oriented at
about 55� from the main loading direction (see Fig. 2b
and c). Finally, Figure 2c shows that damage develops
within the shear band, leading to final fracture.

A qualitative observation of the test structures shows
that the ductility is subjected to wide variations. For in-
stance, in a series of specimens, one failed specimen fol-
lowed by one nonfailed specimen is sometimes observed,
even though the latter involves a larger strain. Further-
more, a series of shorter test structures systematically
show larger ductility compared to longer test structures.
In order to rationalize these observations, Figure 3 gath-
ers the strain experienced by each tensile stage as a func-
tion of the specimen surface area for thicknesses equal
to (a) 200 nm and (b) 375 nm, respectively. The failed
specimens are indicated with open symbols.

In order to provide an accurate estimate of the strain
that was applied to the failed specimens, it was assumed
that the applied stress is equal to the stress experienced
by the first nonfailed specimen located in the same series
of structures. The displacement of the failed specimen as
if no fracture had occurred is then obtained using Eq.
(2). In some structures, fracture occurs at the overlap be-
tween the actuator and the specimen due to the local
stress concentration and not in the gauge section of
the dogbone specimen. Those samples are discarded. Fi-
nally, for some specimens, fracture is not caused by the
deformation imposed by the actuator but is due to pro-
cessing problems, such as a defect in the photoresist or
dust particle on the wafer. In such instances, the failed
samples are also not taken into account.

The strain-hardening exponent n has been extracted
from eight and five stress–strain curves coming from
eight and five different series of tensile stages for the
200 and 375 nm thick films, respectively, using Hollo-
mon’s law:

r ¼ Ken ð3Þ
where K is a hardening parameter. The mean strain-
hardening exponent is equal to 0.11 ± 0.05 and
0.23 ± 0.12 for the 200 and 375 nm thick Al films,
respectively.

In order to analyse more quantitatively the effect of
the specimen size on ductility, the data of Figure 3 are
converted in the form of a probability graph, as shown
in Figure 4a. Because the technique involves a wide
range of sample sizes and imposed strains, the data are
grouped in different intervals of surface area and strain.
For each interval, the probability of failure is calculated
as the number of failed samples divided by the total
number of samples within the same interval.

Figure 4b and c shows a statistical behaviour similar to
the one observed for brittle materials, usually rationalized
using Weibull-type analysis [19]. A maximum strain value
is observed beyond which fracture occurs for all speci-
mens. The maximum values are about 0.08 and 0.27 for
the smallest specimens, made of 200 and 375 nm thick
films, respectively. These values are not far from the aver-
age strain-hardening exponents n, estimated as 0.11 and
0.23, respectively. This implies that the Considère crite-
rion, i.e. necking in rate-independent plastically deform-
ing solids with no imperfection starts when e = n, is
approximately fulfilled for these specimens.

The fact that the Considère criterion is relatively well
verified for small specimens means that the rate sensitiv-
ity of the Al films under investigation is probably small,
otherwise a much larger uniform elongation would have
been measured [12–14]. The main reason for the smaller
ductility in the thinnest films is first related to the larger
yield strength. A simple translation of the hardening
curve, as a result of the Hall–Petch effect, directly im-
plies a lower n, hence a lower uniform elongation. Dif-
ferences in the strain-hardening behaviour are also
possible between the two film thicknesses. First, the
thinnest film, which involves a larger grain size to thick-
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Figure 2. Plastic localization evolution observed in consecutive spec-
imens with different strains involving (a) diffuse necking, (b) localized
shear band process and (c) damage up to final failure.
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Figure 3. Strain as a function of the specimen surface area for (a)
200 nm thick and (b) 375 nm thick Al specimens. Open symbols
indicate failed specimens, filled symbols indicate nonfailed specimens.
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ness ratio, will show a larger tendency for dislocation
starvation. Furthermore, as the stress level is higher in
the thinnest film, grain boundary relaxation effects,
involving dislocation transmission or re-emission and
accompanying decrease of the back stress, can provide
additional reasons for a lower ductility [20,21]. These ef-
fects have not been investigated here.

The distribution of ductility shown in Figure 4 is ex-
plained by the presence of imperfections within the spec-
imens. Imperfections are inherent to the fabrication
process as a result of local thickness reduction due to
the natural roughness, heterogeneities in the etching pro-
cess or grain boundary grooving, or local width reduction
due to the definition of the photoresist or material imper-
fection (e.g. a cluster of grains with weak orientations; see
Ref. [23]). There is an increasing probability of producing
larger imperfections when the surface area increases, as
well as when the thickness decreases. The effect of imper-
fection on necking has been addressed by Hutchinson and
Neale [12], who demonstrated that plastic localization is
triggered earlier in the presence of imperfections. Recent
computational studies based on strain gradient plasticity
theory have addressed the same issue, showing that strain
gradient effects can delay the necking process in micron-
sized samples [22]. A model similar to the Weibull analysis
of brittle failure in the framework of fracture mechanics is
under development, based on size-dependent plastic
localization theory.

As a conclusion, the ductility of thin evaporated Al
films is strongly dependent on the thickness and on the

surface area of the test specimen as a result of statistical
distribution of imperfections. Large imperfections are
more likely in specimens with larger surface area. The
maximum ductility measured on the smallest specimens
is equal to about 0.08 for 200 nm thick film and about
0.27 for 375 nm thick film, not far from the average
strain-hardening exponents of 0.11 and 0.23, respec-
tively, in agreement with the Considère criterion. The
on-chip internal stress-actuated suite of tensile testing
stages has proved to be a suitable tool with which to
investigate the ductility of thin films with high-through-
put capability.
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Figure 4. (a) Methodology for converting a “strain–surface” plot into
a “probability of failure” graph; (b) probability of failure for the
200 nm thick and (c) for the 375 nm thick Al film.
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