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Abstract. Network Control Systems (NAC) have been used in many
industrial processes. They aim to reduce the human factor burden and
efficiently handle the complex process and communication of those sys-
tems. Supervisory control and data acquisition (SCADA) systems are
used in industrial, infrastructure and facility processes (e.g. manufac-
turing, fabrication, oil and water pipelines, building ventilation, etc.)
Like other Internet of Things (IoT) implementations, SCADA systems
are vulnerable to cyber-attacks, therefore, a robust anomaly detection
is a major requirement. However, having an accurate anomaly detection
system is not an easy task, due to the difficulty to differentiate between
cyber-attacks and system internal failures (e.g. hardware failures). In this
paper, we present a model that detects anomaly events in a water sys-
tem controlled by SCADA. Six Machine Learning techniques have been
used in building and evaluating the model. The model classifies different
anomaly events including hardware failures (e.g. sensor failures), sabo-
tage and cyber-attacks (e.g. DoS and Spoofing). Unlike other detection
systems, our proposed work helps in accelerating the mitigation process
by notifying the operator with additional information when an anomaly
occurs. This additional information includes the probability and confi-
dence level of event(s) occurring. The model is trained and tested using
a real-world dataset.

Keywords: Cyber-Physical Systems - Machine Learning - SCADA -
SIEM

1 Introduction

An increasing number of networked control systems are being deployed for the
monitoring, control and response of physical infrastructure. Deprecated infras-
tructure is being replaced by SCADA systems that are compatible with IoT
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devices, enabling remote monitoring and control of previously isolated systems.
Through this upgrade, industries are able to achieve higher reliability and flexi-
bility of deployed systems. However, by enabling external internet access, indus-
tries are introducing the increased risk of cyber-attacks to potentially critical
infrastructure [28].

Vulnerabilities in critical infrastructure protection (CIP) is due to five factors.
The first is the lack of open protocols. Current programmable logic controllers
(PLCs) are often controlled through proprietary network protocols that have
not been scrutinized by security professionals and act as a black box, hence
increasing the attack surface [9]. The second is due to the lack of segmentation
in network infrastructure [17]. Current PLCs are connected to control networks
for the data to be analysed in real time by higher management. Whilst this may
increase profit margins and decrease the reaction time to market changes, the
lack of segmentation allows for transversal network attacks. The third one is
due to the number of off-the-shelf equipment being set up in the network [8].
By including off-the-shelf hardware, the attack surface increases, and introduces
other potentially weak links (i.e. Entry points). The fourth one is due to the
lack of training received by the operators and the inability of the operator to
distinguish between incidents and cyber-attacks [6, 2]. Finally, the fifth one is due
to the exponential growth of organized cyber-crime and nation state-sponsored
cyber-warfare to destabilize countries [16, 27].

Critical infrastructure network Security is intrinsically different from com-
puter networks as the interaction between the nodes is done in real time at a
physical level. Threats affecting computer networks and their associated intru-
sion detection systems (IDS) are discussed in [14,13]. Numerous efforts have
been made to apply current cyber-security solutions to CIP networks, however,
the solutions proposed are often not suited for the infrastructure and do not con-
sider the underlying risks posed by compromised sensor data [12]. As a results,
despite the advances made in the design and implementation of cyber-security
solutions, there is little research being made with the goal of improving STEM
and increase the resilience of CIP against cyber-incidents. In recent years, the
number of attacks against critical infrastructure has significantly increased. The
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Stuxnet malware is an example of a high-profile SCADA attack, which was first
discovered in an Iranian power plant in 2010. Stuxnet was used to infect and
reprogramme the PLCs while hiding the changes made using a custom-made
PLC rootkit [19]. Another example is the Maroochy attack against a sewage
system, causing 800.000L of sewer waste to be released in waterways and parks.
The Maroochy attack was perpetrated by an insider, taking advantage of in-
secure communication between the pumping station and the central SCADA
control system [7]. The Ukrainian power grid attack is another example of a
large SCADA attack, where 225,000 people were affected by the loss of power.
The attacker managed to switch off 30 substations for over 6 hours. In total,
over 74 MWh of electricity was not supplied to the energy grid, representing a
total of 0.015% of the daily electricity consumption of the country. The attack
was later attributed to ”Sandworm”, a Russian group of hackers known for ad-
vanced persistent threats [22]. These attacks demonstrate that when attacking
a CIP, attackers often study the system extensively to perpetrate the attack as
stealthily as possible, tailoring their strategies towards the particular system.

In this manuscript, we aim at improving Security Information and Event
Management (SIEM) for critical infrastructure using machine learning to identify
patterns in the data reported by PLCs in a water system controlled by SCADA.
The contributions of this paper are as follows:

— We provide a new SIEM methodology that leverage sensor data and the
event-driven nature of cyber-physical systems.

— We categorize the attacks in 14 categories, based on the data emerging from
the dataset. Out prototype features 3 experiments using machine learning
algorithms for the detection of the said anomalies.

— We propose the usage of probabilistic model to decrease the mitigation time.

— We conduct a thorough evaluation of SIEM performances through a op-
erational scenarios in the third experiment. The two best predictions are
proposed to the operator allowing him to alleviate cyber-attacks when an
event is detected. The anomaly detection provides an accuracy of 95.64%
with an 85% confidence.

The remainder of this paper is organized as follows; Section 2 discusses equip-
ment used to generate the dataset. Section 3 provides an overview of the dataset,
the scenarios and the features, while Section 4 presents the results obtained by
applying machine learning technique to differentiate between different scenarios.
Section 5 discusses the results and limitations discovered. Section 6 presents re-
lated work in this field. The paper ends by concluding our findings in Section 7.

2 Experimental Set-up

In this section we describe the architecture of SCADA controlled critical in-
frastructure (CI) used to gather the dataset described in Section 3. Current CI
systems are interconnected and are increasingly prone to faulty operations and
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cyber-attacks. Risks present are caused by the fragmentation of technology in-
corporated into the CI, vulnerabilities within hardware and software components
and through physical tampering of equipment by malicious actors. The design of
the CI presented in this research represents a real world, real-time system that
is capable of working under normal and abnormal conditions. Additionally, the
presented system can be exposed to the aforementioned vulnerabilities.

Figure 1 provides a high level overview of the network of the system. The
system is composed of two tanks— the main tank and a secondary tank. Each
tank can contain either fuel or water and can be set to two distinct modes—
acting either as a distributor or as storage. The main and secondary tank has a
capacity of 9 and 7 litres respectively. The main tank is composed of four sensors
connected to a PLC. The sensors are then connected to both Pumpl and Pump2.
Both pumps control the flow of water between the main tank and the secondary
tank. The main tank utilizes the four sensors to measure the level of liquid,
whilst the secondary tank monitors fluid volume with an ultrasound sensor.
Data gathered from the sensors are transferred to the control and monitoring
network using the Modbus protocol.

2.1 Modbus Protocol

The Modbus protocol operates at the application layer of the open systems in-
terconnection (OSI) model. It enables communication between interconnected
network nodes based on a request and reply methodology. The protocol requires
little processing overhead, which makes it a sensible candidate for communica-
tions between PLCs, Sensors, or Remote Terminal Units (RTUs).

The Modbus protocol works independently of protocols implemented in other
layers of the OSI model, hence, it can be used both on routable network or used
for serial communications [15].

The data being stored by the Modbus protocol in slave devices can be cate-
gorized in four different ways as listed below:

— Discrete Input Read-Only Access, it provides Physical I/O
Input Register Read-Ounly Access, it provides Physical I/O
Holding Register Read-Only Access, it provides Read-Write Data
— Coil Read-Write Access, it provides application data

Each table can contain up to 9,999 values, however, some devices can allow
up to 65,536 addresses across all tables. Each vendor has its own specification of
the Modbus data tables, and the set-up often requires the operator to read the
vendor-specific documentation.

2.2 Sensors and PLC

As shown in Figure 1 the system is composed of a single PLC. The PLC is
a compact Base Twido PLC, with 40 discrete 1/0, 24 discrete inputs, and 14
relays. The system is also composed of a Modicon M238 logic controller. The
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system can be sent instructions through the touch screen or via a remote system
connected to the network.

The system is also composed of five sensors as shown in Figure 1 . Four
discrete level sensors are located in the main tank. The first sensor (S0) indicates
a low level in the tank (1.25L), the second sensor (S1) indicates a measure of less
than 3.35L, the third sensor (S2), indicates a level of 8L while the last sensor
(S3) indicates a full tank measure (9L).

The secondary tank is fitted with a single ultrasound sensor. The ultrasound
sensor is a Schneider-Electric cylindrical M18 ultrasonic sensor. The sensor is
fitted at the top of the tank and is used to measure the distance of the liquid
surface to the top of the tank. The sensor can also be used to detect the presence
or absence of liquid in the tank.

2.3 Operation Mode

The system is controlled automatically through the PLC to avoid the spillage of
liquid stored in tanks. Figure 2 illustrates the physical system. For the purpose
of this research, the primary tank is filled from a recovery tank, however, the
recovery tank in our system can be substituted by other liquid source, such as a
river, a fuel line, etc.

Once the primary tank is filled from the recovery tank using pump2, the PLC
activates Pumpl to transfer liquid to the secondary tank to avoid spillage.

To simulate a constant liquid consumption from the tanks, valves at the
bottom of both the primary and the secondary tanks can be opened. The PLC
monitors tank volumes by reading all sensor data registers at 0.1 second intervals.
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Table 1: Registers Extracted Bits Representation

Reg
Bit No. Value Reg.
No. g Bit No. Value
- No.
4 Discrete Sensor 3
- 0 Pump 2
5 Discrete Sensor 2
2 - 1 Pump 1
6 Discrete Sensor 1 3
. 5 Pump 2 Valve
7 Discrete Sensor 0 1 Pump 1 Valve
Vi
4 16-bits Depth Sensor P

The PLC will automatically refuel the primary tank using Pump 2 when the
volume of liquid goes below 1.25L. Similarly, Pump2 will be instructed to stop
when a total volume of 9L is reached. The secondary tank will be refuelled when
ultrasound sensors detect the liquid level to be below 2.1L. Furthermore, the
PLC will only deactivate pump 1 once the ultrasound sensor detects that the
secondary tank has reached a level of 6.3L.

3 Dataset

This section describes the dataset gathered by the IC and the scenarios recorded.
The dataset used in this manuscript has been published separately in a dataset
publication [21].

The CI presented in section 2 was used to gather data for the dataset and
outputted into CSV format. The dataset comprises actuator and sensor readings
that the PLC recorded periodically at 0.1 second intervals. Within the data
collected, PLC registers 2 through 4 provided output data describing the state
of the system that was used for analysis.

Table 1 provides an overview of the different registers used by the PLC. As
shown, Register 2, provides the bits indicating the binary state of the discrete
sensors. A population count can be done on the register to retrieve the state
of each sensor separately. Register 3 contains the state of the pump, either as
active or inactive, while Register 4 contains the step value from 0 to 10,000 of
the ultrasound sensors (e.g. Step 3,000 represents 2.1L of liquid in the tank).

3.1 Scenarios

The dataset consists of 14 different scenarios as shown in Table 2. Each scenario
covers one of 5 operational scenarios representing the potential threat (i.e. sab-
otage, accident, breakdown, or cyber-attack) as well as 6 affected components.
The affected components are system components that are directly affected by
the anomaly.

The recorded data is organized in 15 different CSV files of variable duration
based on the type of incident recorded (i.e. a sabotage incident may take less
time than a distributed denial of service).
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Table 2: Dataset Scenarios, Operational Scenarios and Affected Components

. Affected Operational No. of
Scenario . .
Component Scenario instances
1 Normal None Normal 5519
2 Plastic bag Accident/Sabotage 10549
3 | Blocked measure 1 Breakdown /Sabotage 226
4 | Blocked measure 2 144
- - - Ultrasound Sensor
Floating objects in
5 main tank (2 . 854
objects) Accident/Sabotage
Floating objects in
6 main tank (7 733
objects)
7 Humidity 157
8 Dlscre.te sensor Discrete sensor 1 Breakdown 1920
failure
9 DlscreFe Sensor Discrete sensor 2 5701
failure
Denial of service
10 attack Network Cyber-attack 307
1 Spoofing W 10130
12 | Wrong connection Breakdown/Sabotage 6228
13 tal;e;sso(lllolvl;tiﬁ:egnzi?) 34T
Person hitting the Whole subsystem Sabotage
14 tanks (medium 281
intensity)
Person hitting the
15 tanks (high intensity) 292

3.2 Pre-processing

This subsection highlights the pre-processing of the data obtained. The pre-
processing is composed of six steps.

1. Extract Instances

Firstly, each scenario instances are extracted from the log file. An instance is
represented by the recording of the register values at a specific time. Each log
file has 10 rows per instance. Each row contains The Date, Time, the Register
Number, and the Register Value of the PLC.

2. Calculate rate of change of Register 4

The value of Register 4 is the most significant. However, the significance is not
in its single value but in how the value changes over time. This significance can
be formulated in the rate of change over time. Figure 3 shows the rate change
in Register 4 value over 15 different scenarios.
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Fig. 3: Rate of change of register 4 value over different scenarios

For each instances, the rate of change is calculated over 10 time frames as
expressed in Equation 1.

reg4; — regd;_1o

1)

Rate of change; = — -
time; — time;_19

3. Apply Threshold

Table 2 shows the number of recorded instances per scenario. As shown in the
table, the events are not statistically distributed over the scenarios. Therefore,
the most instances scenario will bias the classification model output. A threshold
is applied to take only the first IV instances of each file. N should satisfy two
conditions a) reduce the gap between instances count per scenario, b) keep the
variation of instances count per scenario.

4. Serialization
A single file is needed for the training process. All Instances are, therefore,
serialized.

5. Normalization

6. Split

Finally, the data is normalized and split into 80% training and 20% testing
sets.
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4 Experiments and Results

This section outlines three experiments conducted and how accurately threats
could be identified. Note that the code (pre-processing and experiments) is avail-
able in a Github repository !.

The aim of the experiments is to alert, and provide the operator with the
most likely affected components, in order to decrease the time to apply the
corrective action.

Six machine learning techniques are used for the classification models, namely,
Logistic Regression (LR) Gaussian Naive Bayes (NB) , k-Nearest Neighbours (k-
NN) , Support Vector Machine (SVM) , Decision Trees (DT) and Random
Forests (RF) [29] [18] [23] [26] [20] [5].

4.1 Parameters

All experiments are conducted using the following computation parameters:
— Training Set : Testing Set = 80% : 20%
— Evaluation: The overall accuracy is calculated as follows:
TP+TN
TP+TN+FP+FN

Overall Accuracy =

Where:

e True Positive (TP): Number of anomaly instances which scenario is cor-
rectly detected

e True Negative (TN): Number of normal instances which are correctly
detected

o False Positive (FP): Number of normal instances which are detected as
one of the anomaly scenarios

e False Negative (FN): Number of anomaly instances which are detected
as normal scenarios

4.2 First Experiment

The aim of the first experiment is to alert the user when an anomaly occurs
without specifying the associated scenario. The aim is to provide the operator
of the CI with a binary output.

Figure 4 shows the classification results of the six machine learning algo-
rithms applied to data. The algorithms provide a binary output. As shown, the
highest accuracies reached are 93.42%, 93.48% and 94% using DT, RF and k-NN
respectively.

Providing an alert that an anomaly exists in the data recorded by the sensors
is considered important, however, as the alert is provided in a binary fashion,
the operator is — in this case — unable to identify the anomaly at first sight and
take corrective action. To this end, a second experiment was established with
the aim of proving more information to the operator.

! https://github.com/AbertayMachineLearningGroup/machine-learning-SIEM-
water-infrastructure
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4.3 Second Experiment

The second experiment aims at giving the operator capital information about
the anomaly. The alert in this case includes the affected component. The model
classifies what components are affected by the five components present in the
CI (i.e. Network, Discrete Sensor 1, Discrete Sensor 2, Ultrasound Sensor and
Whole System) as well as the 'None’ affected case.

Figure 5 shows the classification results of the different machine learning al-
gorithms. The highest accuracies reached are 82.56% and 82.8% using k-NN and
RF respectively. The result shows a trade-off between the binary classification
offered in the first experiment and by providing the operator with more detailed
information. As shown trade-off limits, the accuracy of the system accounts for a
large number of false positive, potentially misleading the operator during normal
operations.

4.4 Third Experiment

The third experiment aims at notifying the operator with an occurring scenario.
To this end, the third experiment is divided in three operational trials.
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Maximum Number of | Number of | Number of | Number of
number of |. | | . .
Aleorithm robable instance with |instance with |instance with |instance with
& P . 1 probable 2 probable 3 probable | 4 probable
scenarios per . . . .
. scenario scenarios scenarios scenarios
instance
3053 - - -
DT 1 100% - - -
1882 962 209 -
k-NN 3 61.64% 31.51% 6.85% -
RE 4 1737 1004 297 15
56.9% 32.89% 9.71% 0.5%
Trial One:

In the first trial, models are trained to classify the different scenarios. The oper-
ator is notified with the scenario occurring. Figure 6 shows the results of these
trial. As shown, the accuracy is reduced and demonstrate a high false negative
rate, with the highest accuracy only reaching 81.89%

To overcome this high false positive rate, the scenarios were reviewed and
the following conclusions were made: (a) The scenarios are co-related. (b) When
models are trained to output the probability of an event belonging to another
of the 14 scenarios, a maximum of 4 scenarios have non-zero probabilities. For
example, Table 3 shows the count of instances having 1, 2, 3 or 4 probable
scenarios. In the second row of Table 3, 61.64% of the instances are classified to
a single scenario, 31.51% are classified to be one of 2 possible scenarios and only
6.85% are classified to be one of 3 possible scenarios.

As a result of this analysis, trial two to four are based on reporting two prob-
able scenarios to the operator, reducing the uncertainty of our approach.

Trial Two:
In the second trial, the operator is notified with two potential attack scenarios in-
stead of a single one. The two scenarios are the highest probabilities provided by
the algorithms. Figure 7 demonstrates that this technique increased the accuracy
to reach 95.55% and 95.64% using RF and k-NN receptively. By providing the
operator with a probability in the attack scenario he is able to act accordingly
and alleviate the attack, hence reducing the overall response time needed.
Table 4 shows an example of correctly classified instances when two probable
scenarios are considered. The numbers are calculated in reference to the k-NN
classifier. For example, in the first row, ’2 Floating Objects’ scenario misclassified
instances are shown . 53 are misclassified as 'Plastic Bag’ sabotage. However, 48
of them can be correctly classified by considering the second probable scenario.
In the same manner, in Table 4 row 4, 85 instances of the 'Plastic Bag’ scenario
are misclassified to be ’2 Floating Objects’ (38 instances), 'Sensor Failure’ (24
instances), 'Spoofing’ (18 instances), 'Normal’ (3 instances) and "Wrong Con-
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Table 4: Co-relation of scenarios that are misclassified based on highest probable
scenario and correct with the second probable one (Calculated based on k-NN

experiment)
Instances count Scenario (Y) The count of instances classified
where X as Y while the correct is X
Scenario Is 1:{0‘: Is 274 2 . 7. Plastic | Sensor Wrong
(X) 1  |Scenario Floz.atmg Flo:'itlng Normal Bag Failure Spoofing C01'r1nec—
Scenario Objects | Objects tion
2
Floating| 53 48 - - - 53 - - -
Objects
7
Floating 5 5 - - - - - - 5
Objects
Normal 80 58 - - - 1 68 - 11
Plastic | g5 75 38 - 3 - 24 18 2
Bag
Semsor | g5 | 137 : : 75 53 : 5 50
Failure
Spoofing| 45 25 - - - 37 8 - -
Wrong
Connec-| 102 72 - 5 23 5 69 - -
tion

nection’(2 instances). 75 can be correctly classified with the second probable
scenario in consideration.

While the operator is notified with two probable scenarios, it can also be
misleading. For this reason our third attempt provides a confidence measure to
the operator increasing his situational awareness.

Trial Three and Four:

In the third and fourth trials, a single scenario is reported to the operator unless
the probability is less than the confidence percentage. Figure 8 shows the results
for 75% confidence. In the first case, a single scenario is reported if its probability
is greater than or equal to 0.75, otherwise, if the threshold is reached a second
scenario is reported as well. The accuracy provided is 91.84%.

This accuracy rises when using an 85% confidence. Figure 8 shows a maximum
accuracy of 95.64% using k-NN.

It can be seen from Figure 7 and 8 that DT accuracy is the same. This is due

to the DT output, as a single scenario for each instance is available, therefore it
is not possible to output two probable scenarios to the operator.
Finally, the result shows that the fourth operational trial is the most convenient
for the operator as a single scenario is provided, unless the threshold is reached.
The accuracy provided by the fourth operational scenario also reaches 95.64%,
hence reducing the uncertainty of the attack currently at hand, and the ability
of the operator to alleviate the attack.
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5 Discussion and Limitations

In this section, we discuss the main takeaways based on the experiments evalu-
ated in Section 4. Additionally, the limitations of our models are listed.
Key takeaways:

— Using high confidence: Probabilities are considered to solve the trade-off
between the co-related scenarios and reducing the amount of information
provided to the operator (i.e. multiple scenarios). This implies reporting the
probability of having a scenario occurring. For this piece of work, a confidence
interval of 85% is evidenced to provide the best results.

— Sensors location and architecture: The position of the sensors and the
architecture of the SCADA system affects the collected data and, conse-
quently, affects the model detection accuracy. Moreover, the collection of
data greatly affect the pre-processing stages, it is therefore important to
gather data consistently.

— Longer recording periods needed: In order to increase the accuracy of
the machine learning model, the operators should have the recordings of long
periods of time for all sensor data. This helps have multiple instances over
time and therefore, more instances for training. Moreover, it is recommended
to have similar recording duration for the different scenarios. In the case of
massively different recording lengths, files need to be serialised in order to
avoid bias towards the scenario with the longest recording time.

— Importance of scenarios: The more recorded scenarios used for training,
the more robust the detection model. With more scenarios, the model can
learn variations in scenarios. Moreover, the operator will be provided with
higher confidence of reported anomalies.
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Limitations:

— Limited Number of Scenarios: The experiments were conducted using
15 log files which covered 14 scenarios. Any new scenario other than the ones
covered in the log files will not likely be reported to the operator.

— Model Evaluation: Models are evaluated using six machine learning tech-
niques. Hence, the results are limited to these algorithms.

— Architecture: The data is limited to the scale of the CI used in this study.
More complex architecture — such as introducing more tanks and sensors —
may not yield the same anomaly detection accuracy.

— Real-Time testing: The model is built and tested based on the dataset,
however, testing the model real-time is essential to measure the performance.

6 Related Work

The area of critical infrastructure protection and Security Information and Event
Management has a rich history of books, deployments and lessons learned from
both universities and organizations deploying tools and techniques to protect
their environments.

Robert Mitchell and Ing-Ray Chen [25] presented a survey on recent Cyber-
Physical Systems (CPS) intrusion detection systems. They classified CPSs into
two categories based on potential detection technique: (1) Knowledge-Based or
Misuse Detection and (2) Behaviour-Based. While the survey provides a general
overview of potential threats, it focuses essentially on the network traffic rather
than on data provenance and data accuracy. This survey, however, provides the
stepping stone of the field. In [4] and [3] Amin et al. provide an overview a
security threat assessment of a networked CI including different layers (i.e. su-
pervisory and control networks). The manuscripts present a grey-box approach
where the hacker possesses a certain level of knowledge of the system and is able
to perpetrate a deception attack against the system in order to enable liquid
spilling from the canal the IDS was tested on. Cheng et al. [11] provide a tech-
nique to alleviate control-oriented attacks, code-injection attacks or code-reuse
attacks on embedded devices. The highlight the lack of existing mechanisms and
present 'Orpheus’, a program behaviour model, taking advantage of the event-
driven nature of embedded devices controlling critical infrastructure. Mathur [24]
discusses the limitations of the detecting a incidents in critical infrastructures by
analysing processes. The manuscript refers to two methods, the first described
is the CUSUM [10]. CUMSUM is a statistical method allowing to detect anoma-
lies in time series, corresponding to a specified process. The technique requires
two parameters to operate, the ’bias’ and thethreshold’. The CUMSUM provides
the cumulative sum of the deviation for the process measured. By plotting the
predicted and observed state, the operator is able to identify the state of the
facility and identify changes in behavior. The second methodology is based on
State Entanglement (SE) [1]. SE combines the states of multiple components of a
system to construct a state space. The state space act as a blacklist, highlighting
prohibited states during normal operations.
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7 Conclusion and Future Work

This work focused on building an anomaly detection and a SIEM tool for a
SCADA water system. The model was evaluated using a real-world dataset cov-
ering 14 anomaly scenarios including normal system behavior. The presented
scenarios covered a wide range of events, ranging from hardware failure to sab-
otage. Three experiments were conducted using 6 Machine Learning techniques.

The experiments varied based on the level of information reported to the
operator. The First experiment allowed anomaly event to be reported to the op-
erator as a binary output. While events where being detected as either anomalies
or normal operation, the operator was unaware of the type of anomaly occurring.
The second experiment reported the affected component, providing the operator
with information relating to a single or multiple sensor data. Finally, the third
experiment - which provided the best results - reported the anomaly with an
accuracy level, helping the operator to take subsequent correcting steps.

The overall evaluation showed that k-NN, Decision Tree and Random Forest
outperformed 'Gaussian Naive Bayes, SVM and kernel SVM. Moreover, k-NN
results demonstrated the highest accuracy amongst all algorithms in the three
experiments. The experiments achieved the accuracy of 94% for the binary out-
put and 95.64% for the scenarios classification. As aforementioned, the scenarios
are co-related, therefore, the operator - in the third experiment - is notified with
the most probable scenarios/anomaly occurring. Moreover, a confidence level
was used to provide the operator with the best information available.

To further enhance the detection accuracy, the following should be consid-
ered. Increasing the dataset instances to enhance the training process and build-
ing hybrid model to classify subgroups of events.
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