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Abstract This manuscript provides novel bounds and estimates, for the first time, on size-dependent properties8

of composites accounting for generalized interfaces in their microstructure, via analytical homogenization9

verified by computational analysis. We extend both the composite cylinder assemblage and Mori–Tanaka10

approaches to account for the general interface model. Our proposed strategy does not only determine the11

overall response of composites, but also it provides information about the local fields for each phase of the12

medium including the interface. We present a comprehensive study on a broad range of interface parameters,13

stiffness ratios and sizes. Our analytical solutions are in excellent agreement with the computational results14

using the finite element method. Based on the observations throughout our investigations, two notions of size-15

dependent bounds and ultimate bounds on the effective response of composites are introduced which yield a16

significant insight into the size effects, particularly important for the design of nano-composites.17

Keywords General interface · Size effects · Ultimate bounds · Size-dependent bounds · Homogenization ·18

Composites19

1 Introduction20

Interphases between the constituents of heterogeneous materials play a crucial role on the overall material21

response and particularly at small scales, due to the large area-to-volume ratio. A common strategy to model22

the interphases is to replace them by a zero-thickness general interface [1] characterized by displacement and23

traction jumps. This idea was initially proposed by Sanchez-Palencia et al. [2,3] and followed by Hashin [4] for24

a thermal problem. Since the area-to-volume ratio is proportional to the inverse of the dimension, accounting25

for interfaces in homogenization results in size-dependent properties hence, capturing the size effects, unlike26

the classical homogenization [5–7] that lacks a length scale. In this contribution, we present two analytical27
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Fig. 1 Categorization of the interface models based on their kinetic or kinematic behavior. The perfect interface model does
not allow for the displacement jump nor traction jump. The cohesive interface model has continuous traction field, whereas the
displacement jump is allowed across the interface. In the elastic interface model, the displacement jump across the interface
is zero, whereas the traction jump is permissible. All the models are unified in the general interface model in which both the
displacement jump and traction jump across the interface are possible. Two interface properties of µ and k characterize the
interface behavior. The interface stiffness against opening is denoted k, and the interface resistance against stretch is denoted µ

solutions to determine the overall behavior of composites via a homogenization framework accounting for28

generalized interfaces. In addition, computational analysis is carried out to evaluate the performance of the29

analytical solutions.301
Figure 1 categorizes the interface models based on their kinetic (tractions) and kinematic (displacements)31

features. The interface is referred to as perfect if the traction and displacement fields are continuous across the32

interface, and thus, the perfect interface model is coherent both kinetically and kinematically.33

The elastic interface model is kinematically coherent but kinetically non-coherent and hence semi-perfect.34

The main assumption of the interface elasticity theory [8–15] is that the interface is allowed to have its35

own thermodynamic structure. This assumption could result in a traction jump across the interface due to36

the Young–Laplace equation [16–18]. The subject of surface and interface elasticity has been extensively37

studied in [19–35] among others. The cohesive interface model allows for the displacement jump but not for38

the traction jump. This model is kinetically coherent and kinematically non-coherent. The cohesive interface39

model emerges in a variety of studies dating from the seminal works [36–38] to its extensions and applications40

in [39–57]. The general interface model is a unified version of all the aforementioned interface models where41

both the displacement jump and traction jump are admissible. The general interface has been examined in a42

fundamental contribution by Hashin [58] and further studied in [59–68] among others.43

In the past decade, scale-dependent macroscopic behavior due to the microscale elasticity has been com-44

prehensively studied from both analytical [69–79] and computational [80–84] perspectives. Comparisons with45

atomistic simulations and experiments in [85–90] justify that the size effects due to interfaces are physically46

meaningful. The underlying assumption in this contribution is that the size effects are only observed due to the47

presence of the interface at the microstructure. While the surface/interface elasticity itself may be explained48

by the tangential contributions of second-gradient continua on the boundary, the full contributions of second-49

gradient continua in the bulk are not taken into account. Obviously, one must eventually develop a complete50

model in which both strain-gradient and surface/interface elasticity are present. Only then, one can claim51

whether or not the size effect due to the interface is correlated with those associated with the strain-gradient52

effects. See [23] for an excellent study on size-dependent effects in nano-materials.53

The term “size” in this contribution refers to the physical size of a microstructure. Figure 2 illustrates54

schematically the definition of the size. The volume fraction of the inclusion is denoted f . For a given volume55

fraction and size, the radii of the inclusion and the matrix can be calculated. Throughout this manuscript,56

the macroscopic quantities are distinct from their microscopic counterparts by a left superscript “M.” For57

instance, M{•} is a macroscopic quantity with its counterpart being {•} at the microscale. Interface quantities58

are distinguished from the bulk quantities by a bar placed on top them. That is, {•} denotes an interface quantity59

with its bulk counterpart {•}. Moreover, the average and the jump operators across the interface are denoted60

by {{{•}}} and �{•}�, respectively.61

The rest of this manuscript is organized as follows. Section 2 elaborates on the problem definition and62

provides the governing equations. In Sect. 3, the analytical approaches accounting for the general interface63
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Fig. 2 Illustration of the term “size.” Having the volume fraction, the radius of the inclusion and the matrix can be obtained for
each specific size. As a result, size is proportional to the radius of the inclusion or that of the matrix

Fig. 3 Problem definition for homogenization including the general interface model. The macrostructure is shown as well as the
microstructure which is in fact the RVE. It is assumed that the constitutive laws at the microscale are known and by prescribing a
macroscopic strain M

ε on the microstructure, the macroscopic stress M
σ is obtained via averaging. A finite-thickness interphase

is replaced with a zero-thickness interface model. The classical interface models cannot capture heterogeneous material layer,
and thus, the general interface model is required

model are presented. Numerical examples are provided in Sect. 4 to compare the computational and analytical64

results. Section 5 concludes this work and provides further outlook for future contributions.65

2 Governing equations66

In this section, the governing equations of continua embedding a general interface are given. For the sake of67

brevity, only the final form of the essential equations are stated. For more details on the derivations, the reader68

is referred to [1,65,91]. Consider a continuum body taking the configuration M
B at the macroscale, as shown69

in Fig. 3, with its corresponding RVE at the microscale denoted as B. A general interface model is required to70

replace the finite-thickness interphase between the constituents [92]. It is assumed that the constitutive behavior71

of the material at the microscale is known and the macroscopic overall response of the medium is obtained72
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via averaging over the RVE [see [93–98], among others]. In doing so, a macroscopic strain M
ε is prescribed73

on the microstructure and the macroscopic stress M
σ is obtained. Moreover, to establish a computational74

homogenization framework, an appropriate RVE must be chosen such that (i) it is small enough to guarantee75

scale separation and (ii) it is large enough to be representative of the microstructure. For more details on the76

definition of RVE, see [99–102]. Here, we significantly simplify the RVE to a circular microstructure in order77

to obtain in-plane isotropic effective behavior of the RVE suitable for comparison with the proposed analytical78

estimates.79

The interface I separates the microstructure into two subdomains B
+ and B

−. The outward unit normal80

to the external boundary is denoted as n, whereas n defines the interface unit normal vector pointing from the81

minus side of the interface to its plus side. The displacement field is denoted as u, and the interface displacement82

u is defined by the average displacement across the interface conforming to the definition of the mid-surface.83

The displacement average and the displacement jump across the interface read84

u := {{u}} =
1

2

[
u+ + u−

]
and �u� =

[
u+ − u−

]
, (1)85

respectively, where u+ is the displacement of the plus side of the interface and u− is the displacement of the86

minus side of the interface. The strain field in the bulk and on the interface read87

ε =
1

2

[
i · gradu +

[
gradu

] t · i
]

in B and ε =
1

2

[
i · grad u +

[
grad u

] t · i

]
on I , (2)88

where i is the identity tensor. The operator grad{•} characterizes the projection of the gradient onto the interface89

as grad{•} = grad{•} · i with i = i − n ⊗ n . Note the contraction i · grad u enforces the projection of the90

interface displacement gradient onto the interface.91

The total energy density of the medium consists of the bulk free energy density ψ and the interface free92

energy density ψ . The bulk free energy density is assumed to be only a function of the strain field ψ = ψ(ε). The93

interface free energy density is assumed to be a function of both interface strain and interface displacement94

jump as ψ = ψ(ε, �u�). That is, the contributions of higher gradients of the interface strain or interface95

curvature are not taken into account. Connecting the bulk and interface energy densities to their microscale96

energy conjugates, the constitutive equations read97

σ =
∂ψ

∂ε

in B , σ =
∂ψ

∂ε

and t =
∂ψ

∂[[u]]
on I , (3)98

where t is the interface traction as t := {{σ }} · n. The balance equations in the absence of external forces read99

divσ = 0 in B , σ · n = t on S ,

div σ + [[σ ]] · n = 0 on I (along the interface) , {{σ }} · n = t on I (across the interface) ,
(4)100

with t being the traction on the boundary S. The interface divergence operator div{•} = grad{•} : i embeds101

the interface curvature operator. The constitutive material behavior for the bulk and interface reads102

σ = 2 µ ε + λ [ε : i] i in B , σ = 2 µ ε + λ
[
ε : i

]
i and t = k �u� on I , (5)103

in which λ and µ are the bulk Lamé parameters and λ and µ are the interface Lamé parameters. The interface104

Lamé parameters correspond to the interface in-plane resistance against stretches. The interface orthogonal105

resistance, k, represents the interface resistance against opening. Without loss of generality, it can be shown106

that for the two-dimensional setting here λ = 0 can be assumed since the resistance along an isotropic interface107

can be sufficiently captured with only one interface parameter.108

Next, we briefly elaborate on the micro- to macro-transition. The macroscopic strain and stress can be109

obtained through boundary integrals of the microscopic quantities as110

M
ε =

1

V

∫

S

1

2
[u ⊗ n + n ⊗ u] dA , M

σ =
1

V

∫

S

t ⊗ x dA . (6)111

Exploiting the divergence theorem, the above relations simplify to the averages112

M
ε =

1

V

∫

B

ε dV +
1

V

∫

I

1

2

[
�u� ⊗ n + n ⊗ �u�

]
dA , M

σ =
1

V

∫

B

σ dV +
1

V

∫

I

σ dA . (7)113
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Table 1 The relations between the interface and bulk properties for transversely isotropic composites in terms of the material
parameters in Sect. 2 and the commonly accepted notation in analytical homogenization employed in Sect. 3. The parameters
in the first row correspond to a generic case but in the second row correspond to a more specific (transversely isotropic) case of
interest here

Bulk Interface
µax µtr κtr l n µax m n l kr kθ kz

µ µ λ + µ λ λ + 2µ µ 2µ 2µ 0 k k k

µax : axial shear modulus µax : interface axial shear modulus
µtr : transverse shear modulus m : interface transverse shear parameter
κtr : transverse bulk modulus n : interface axial stiffness
l : stiffness in r z and θ z directions l : interface stiffness in θ z direction
n : axial stiffness kr : interface orthogonal resistance in r

µ : shear modulus kθ : interface orthogonal resistance in θ

λ : first Lamé parameter kz : interface orthogonal resistance in z
µ : interface in-plane resistance
k : interface orthogonal resistance

Finally, the Hill–Mandel condition must be employed to guarantee the energy equivalence between the two114

scales. The interface enhanced Hill–Mandel condition reads115

δMψ
!
=

1

V

∫

B

δψ dV +
1

V

∫

I

δψ dA , (8)116

where
!
= shows the conditional equality. Utilizing the Hill’s lemma, after some steps the Hill–Mandel condi-117

tion (8) simplifies to the boundary integral118

∫

S

[
δu − δM

ε · x
]
·
[
t − M

σ · n
]

dA
!
= 0 , (9)119

identifying appropriate boundary conditions on the RVE. Among various boundary conditions satisfying the120

Hill–Mandel condition, the canonical ones of interest here are the linear displacement boundary condition121

(DBC) and constant traction boundary condition (TBC). See Firooz et al. [103] for a comprehensive study on122

the influences of the boundary condition as well as the RVE type on the overall behavior of composites.123

3 Analytical estimates124

The aim of this section is to elaborate the analytical methods to determine the overall behavior of fiber125

composites embedding general interfaces. First, the preliminaries of the RVE problem for fiber reinforced126

composites is provided. Second, we extend the composite cylinder assemblage approach and the generalized127

self-consistent method to account for general interfaces resulting in bounds and estimates on the macroscopic128

properties of composites. Finally, an interface enhanced Mori–Tanaka method is developed to incorporate129

general interfaces which not only provides the overall properties but also determines the state of the stress and130

strain in each phase of the medium including the interface. Table 1 gathers the relations between the material131

parameters in Sect. 2 and the commonly accepted notation in analytical homogenization employed in this132

section as well as the physical meaning of each modulus.133

In passing, we shall add that the composite cylinders assemblage (CCA) framework has been designed to134

account for transversely isotropic constituents at most. Further anisotropy does not allow to identify analytical135

solutions in boundary value problems like those presented in this manuscript; at least this cannot be done in a136

straightforward manner. Cylindrical orthotropy of the fiber and the interface, however, has been addressed for137

similar type of boundary value problems in [104]. To the best of the authors knowledge, no further anisotropy138

has been studied so far using the composite cylinders assemblage approach. Considering Eshelby-based mean-139

field approaches, one could follow a strategy similar to the one described by Dinzart and Sabar [105] for general140

anisotropy of the constituents.141
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Fig. 4 Heterogeneous medium and its corresponding appropriate RVE considered in our problem. The inner radius shows the
radius of the fiber, whereas the outer one shows the radius of the matrix. The interface lies at r = r1

3.1 Preliminaries of the RVE problem for fiber composites142

Figure 4 demonstrates the heterogeneous medium and its underlying RVE consisting of two concentric cylinders143

corresponding to the fiber (phase 1) and matrix (phase 2) with the interface lying at r = r1. The volume fraction144

of the fiber is f = r1
2/r2

2. Obviously, for the problem of interest here, it is more convenient to express the145

equilibrium equations and the constitutive law in cylindrical coordinate system with coordinates r , θ and z.146

For transversely isotropic materials, the constitutive material behavior in Voigt notation reads147

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

σrr

σθθ

σzz

σrθ

σr z

σθ z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

κtr + µtr κtr − µtr l 0 0 0

κtr − µtr κtr + µtr l 0 0 0

l l n 0 0 0

0 0 0 µtr 0 0

0 0 0 0 µax 0

0 0 0 0 0 µax

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

εrr

εθθ

εzz

2εrθ

2εr z

2εθ z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

with

εrr =
∂ur

∂r
,

εθθ =
1

r

∂uθ

∂θ
+

ur

r
,

εzz =
∂uz

∂z
,

2εr z =
∂uz

∂r
+

∂ur

∂z
,

2εθ z =
1

r

∂uz

∂θ
+

∂uθ

∂z
,

2εrθ =
∂uθ

∂r
+

1

r

∂ur

∂θ
−

uθ

r
,

(10)148

and the equilibrium equations in the bulk read149

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂σrr

∂r
+

1

r

∂σrθ

∂θ
+

∂σr z

∂z
+

σrr − σθθ

r
= 0 ,

∂σrθ

∂r
+

1

r

∂σθθ

∂θ
+

∂σθ z

∂z
+

2

r
σrθ = 0 ,

∂σr z

∂r
+

1

r

∂σθ z

∂θ
+

∂σzz

∂z
+

1

r
σr z = 0 .

(11)150

The constitutive relations for the general interface at r = r1 are characterized by four parameters for the151

traction jump (m, l, n and µax) and three parameters for the displacement jump (kr , kθ and kz) as152
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⎡
⎢⎣

σ θθ

σ zz

σ θ z

⎤
⎥⎦ =

⎡
⎢⎣

m l 0

l n 0

0 0 µax

⎤
⎥⎦

⎡
⎢⎣

εθθ

εzz

2εθ z

⎤
⎥⎦ with

εθθ =
1

r1

∂uθ

∂θ
+

ur

r1

εzz =
∂uz

∂z

2εθ z =
1

r1

∂uz

∂θ
+

∂uθ

∂z

and

⎡
⎢⎣

tr

tθ

t z

⎤
⎥⎦ =

⎡
⎢⎣

kr �ur �

kθ �uθ �

kz �uz�

⎤
⎥⎦ . (12)153

The equilibrium equations at the interface are154

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−
σ θθ

r1
+ �σrr � = 0 ,

1

r1

∂σ θθ

∂θ
+

∂σ θ z

∂z
+ �σrθ � = 0 ,

1

r1

∂σ θ z

∂θ
+

∂σ zz

∂z
+ �σr z� = 0 .

(13)155

The three normal vectors in cylindrical coordinates are156

nr =

[
cos θ
sin θ

0

]
, nθ =

[
− sin θ
cos θ

0

]
, nz =

[
0
0
1

]
, (14)157

and therefore, the displacements and stresses can be represented in tensorial forms as158

u = ur nr + uθ nθ + uz nz ,

σ = σrr nr ⊗ nr + σθθ nθ ⊗ nθ + σzz nz ⊗ nz +
1

2
σrθ [nr ⊗ nθ + nθ ⊗ nr ]

+
1

2
σr z[nr ⊗ nz + nz ⊗ nr ] +

1

2
σθ z[nθ ⊗ nz + nz ⊗ nθ ] ,

σ = σ θθ nθ ⊗ nθ + σ zz nz ⊗ nz +
1

2
σ θ z[nθ ⊗ nz + nz ⊗ nθ ] .

(15)159

Using the equilibrium equations in the bulk and on the interface, the divergence theorem for our problem can160

be written as161

∫

B

div{•} dV +

∫

I

�{•}� · n dA =

∫

S

{•} · n dA and162

∫

I

div{•} dA −

∫

I

divn {•} · n dA =

∫

∂I

{•} · ñ dL , (16)163

where ñ is the normal at the boundary of the interface but along the interface itself. Using the above theorems,164

the average mechanical energy in the composite reads165

U =
1

2V

∫

B

σ :ε dV +
1

2V

∫

I

σ :ε dA

=
1

2V

[ ∫

B

div(u · σ ) dV +

∫

I

u · �σ � · n dA

]

︸ ︷︷ ︸∫
∂B

[σ ·n]·u dA

+
1

2V

∫

I

div(u · σ ) dA

︸ ︷︷ ︸∫
∂I

[σ ·̃n]·u dL

, (17)166

The volume element in the cylindrical coordinates is dv = r dr dθ dz, the (vertical) surface element at a167

constant radius r is dsr = r dθ dz, the (horizontal) surface element at a constant height z is dsz = r dr dθ and168
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the line element at a constant radius r and height z is dl = r dθ . Finally, the average mechanical energy in the169

RVE and in equivalent homogeneous medium read170

U RVE =
1

2V

∫ 2π

0

∫ r2

0

[[
σr zur + σθ zuθσzzuz

]

z=L

−

[
σr zur + σθ zuθ + σzzuz

]

z=−L

]
r dr dθ

+
1

2V

∫ L

−L

∫ 2π

0

[
σrr ur + σθr uθ + σzr uz

]

r=r2

r2 dθ dz

+
1

2V

∫ 2π

0

[[
σ θ zuθ + σ zzuz

]

z=L

−

[
σ θ zuθ + σ zzuz

]

z=−L

]

r=r1

r1 dθ ,

U eq =
1

2V

∫ 2π

0

∫ r2

0

[[
σ

eq
r z u

eq
r + σ

eq
θ z u

eq
θ + σ

eq
zz u

eq
z

]

z=L

−

[
σ

eq
r z u

eq
r + σ

eq
θ z u

eq
θ + σ

eq
zz u

eq
z

]

z=−L

]
r dr dθ

+
1

2V

∫ L

−L

∫ 2π

0

[
σ

eq
rr u

eq
r + σ

eq
θr u

eq
θ + σ

eq
zr u

eq
z

]

r=r2

r2dθ dz .

(18)171

As we will see later, for the expansion and the in-plane shear boundary value problems, all the quantities with172

index z vanish and the above relations simplify to173

U RVE =
1

4πr2
2 L

∫ L

−L

∫ 2π

0

[
σ (2)

rr u(2)
r + σ

(2)
rθ u

(2)
θ

]
r=r2

r2 dθ dz ,

U eq =
1

4πr2
2 L

∫ L

−L

∫ 2π

0

[
σ

eq
rr u

eq
r + σ

eq
rθ u

eq
θ

]
r=r2

r2 dθ dz .

(19)174

3.2 Composite cylinder assemblage (CCA) approach and generalized self-consistent method (GSCM)175

Recently, Chatzigeorgiou et al. [65] proposed an extension of the generalized self-consistent method176

(GSCM) [106] and the composite cylinders assemblage (CCA) approach [107] to determine the effective177

shear modulus and bulk modulus of fiber composites embedding general interfaces. Motivated by these obser-178

vations, here the original formalism of Hashin and Rosen [107] is extended to account for the general interface179

to determine bounds on the overall shear modulus Mµ. Note that the same methodology can be employed to180

obtain bounds for the effective bulk modulus Mκ . However, the upper and lower bounds on the bulk modulus181

coincide. Therefore, the bounds and estimates for the bulk modulus yield identical results. The derivations of182

the effective bulk and shear modulus developed in [65] are briefly (and more explicitly) stated here for the183

sake of completeness.184

3.2.1 Effective bulk modulus185

Assume that the RVE is subject to a radial expansion with its upper and lower surfaces fixed as depicted in186

Fig. 5 (left). The displacement field in cylindrical coordinates reads187

u0
(r,θ,z) =

[
βr
0
0

]
. (20)188

Hashin and Rosen showed that the displacement field within each constituent reads189

u(i)
r = β �

(i)
1 r + β �

(i)
2

1

r
and u

(i)
θ = u(i)

z = 0 , (21)190

for i = 1, 2 where i = 1 corresponds to the fiber and i = 2 corresponds to the matrix. The unknowns �
(1)
1 ,191

�
(2)
1 , �

(1)
2 and �

(2)
2 can be calculated using the boundary and interface conditions192

u
(1)
r finite at r = 0 → �

(1)
2 = 0 , (finite displacement at r = 0)

tr = kr �ur � →
σ

(2)
rr (r1) + σ

(1)
rr (r1)

2
= k

[
u(2)

r (r1) − u(1)
r (r1)

]
, (traction average at r = r1)

[
div σ

]
r
+ �tr � = 0 → −

σ θθ

r1
+ σ (2)

rr (r1) − σ (1)
rr (r1) = 0 , (traction equilibrium at r = r1)

u
(2)
r (r2) = βr2 , (prescribed displacement at r = r2)

(22)193
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Fig. 5 Boundary value problems for obtaining the macroscopic bulk modulus (left) and the macroscopic shear modulus (right)
developed in [65]

leading to the system194

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
1

r2
2

−λ1 − µ1 −
µ

2r1
λ2 + µ2 −

µ

2r1
−

2µ2r1 + µ

2r3
1

λ1 + µ1

k
+ r1

λ2 + µ2

k
− r1 −

µ2 + kr1

kr2
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

�
(1)
1

�
(2)
1

�
(2)
2

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1

0

0

⎤
⎥⎥⎥⎦ . (23)195

If the RVE is substituted by an equivalent homogeneous medium, applying the boundary condition (20) yields196

the displacement field u
eq
r = βr and u

eq
θ = u

eq
z = 0. Using Eq. (19), the overall energy in the RVE and in the197

equivalent homogeneous medium reads198

U RVE = 2β2
[
�

(2)
1 [λ2 + µ2] −

�
(2)
2 µ2

r2
2

]
and U eq = 2β2Mκ , (24)199

where �
(2)
1 and �

(2)
2 are the solutions of the system (23). The above energies should be equal according to200

Hill–Mandel condition. Therefore, we can obtain an explicit expression for the overall bulk modulus Mκ of201

fiber composites embedding general interfaces202

Mκ = λ2 + µ2 +
f

1[
2r1λ1 + 2r1µ1 + µ

][
2kr2

1 − µ

]

4r2
1

[
2λ1 + 2µ1 + kr1

]
+ 2r1µ

−
[
λ2 + µ2

]
+

µ

2r1

+
1 − f

λ2 + 2µ2

. (25)203

3.2.2 Effective shear modulus204

In order to determine the effective shear modulus of fiber composites, Christensen and Lo [106] proposed to205

consider an infinite effective medium surrounding the matrix whose properties are indeed, the unknowns of the206

problem. Therefore, the composite cylinder assemblage approach is transformed to generalized self-consistent207

method (GSCM). To obtain the effective shear modulus, the deviatoric traction is applied to the RVE as depicted208

in Fig. 5 (right). The traction field in cylindrical coordinates reads209

t0
(r,θ,z) =

[
β sin 2θ
β cos 2θ

0

]
. (26)210
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Considering the above boundary value problem and following the procedures in [106], the developed displace-211

ment fields in the medium read212

u(i)
r =

4∑

j=1

a
(i)
j �

(i)
j r

n
(i)
j sin(2θ) , u

(i)
θ =

4∑

j=1

�
(i)
j r

n
(i)
j cos(2θ) ,

u
(eff)
r = β

r2

4Mµ

[
2r

r2
+ �

(eff)
3

r3
2

r3
+ 2

[
1 +

Mµ

Mκ

]
�

(eff)
4

r2

r

]
sin(2θ) ,

u
(eff)
θ = β

r2

4Mµ

[
2r

r2
− �

(eff)
3

r3
2

r3
+ 2

Mµ

Mκ
�

(eff)
4

r2

r

]
cos(2θ) ,

(27)213

for i = 1, 2 where i = 1 corresponds to the fiber and i = 2 corresponds to the matrix. The constants a
(i)
j read214

a
(i)
j =

2λ(i) + 6µ(i) − 2n
(i)
j [λ(i) + µ(i)]

λ(i) + 6µ(i) + [n
(i)
j ]2[λ(i) + 2µ(i)]

, (28)215

with n
(i)
j being the solutions of the polynomial n4 −10n2 +9 = 0. The constants n

(i)
1 and n

(i)
2 are taken to be the216

positive solutions, and n
(i)
3 and n

(i)
4 are taken to be the negative solutions as n

(i)
1 = 3, n

(i)
2 = 1, n

(i)
3 = −3 and217

n
(i)
4 = −1. The ten unknowns �

(1)
1 , �(1)

2 , �(1)
3 , �(1)

4 , �(2)
1 , �(2)

2 , �(2)
3 , �(2)

4 , �(eff)
3 and �

(eff)
4 can be determined218

via applying the interface and boundary conditions. The boundary and interface conditions that hold for the219

RVE in this problem are220

u
(1)
r , u

(1)
θ finite at r = 0 → �

(1)
3 = �

(1)
4 = 0 , (finite displacement at r = 0)

tr = kr �ur � → σ
(2)
rr (r1) + σ

(1)
rr (r1) = 2kr

[
u

(2)
r (r1) − u

(1)
r (r1)

]
, (traction average at r = r1)

tθ = kθ �uθ � → σ
(2)
rθ (r1) + σ

(1)
rθ (r1) = 2kθ

[
u

(2)
θ (r1) − u

(1)
θ (r1)

]
, (traction average at r = r1)

[
div σ

]
r
+ �tr � = 0 → −

σ θθ

r1
+ σ (2)

rr (r1) − σ (1)
rr (r1) = 0 , (traction equilibrium at r = r1)

[
div σ

]
θ

+ �tθ � = 0 →
1

r1

∂σ θθ

∂θ
+ σ

(2)
rθ (r1) − σ

(1)
rθ (r1) = 0 , (traction equilibrium at r = r1)

σ
(2)
rr (r2) = σ

(eff)
rr (r2) and σ

(2)
rθ (r2) = σ

(eff)
rθ (r2) , (traction continuity at r = r2)

u
(2)
r (r2) = u

(eff)
r (r2) and u

(2)
θ (r2) = u

(eff)
θ (r2) . (displacement continuity at r = r2).

(29)221

In order to find the unknowns using the above system of equations, an additional energetic criterion expressed222

in [106] must be imposed which is deduced from the Eshelby’s energy principle223

∫ 2π

0

[
σ (eff)

rr u
eq
r + σ

(eff)
rθ u

eq
θ − σ

eq
rr u(eff)

r − σ
eq
rθ u

(eff)
θ

]

r=r2

dθ = 0 , (30)224

which yields �
(eff)
4 = 0. The remaining unknowns are calculated by solving the system (29). Further details225

regarding the solution of the system are available in Appendix A.1. Unlike the effective bulk modulus, it is226

not possible to furnish an explicit expression for the effective shear modulus. Nevertheless, a semi-explicit227

expression is attainable which reads228

[a6b5 − a5b6]
Mµ2 − [b5c5 − b6c5 + a5c6 + a6c6]

Mµ + 2c5c6 = 0 .229

Between the two roots obtained from the above relation, the positive one is the effective shear modulus. The230

parameters a5, a6, b5, b6, c5 and c6 are obtained from Eq. (A.5), see Apeendix A.1 for more details.231
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Fig. 6 Boundary value problems for obtaining bounds on the macroscopic shear modulus of a fiber composite. Strain boundary
condition (left) and stress boundary condition (right)

3.2.3 Strain bound on the shear modulus232

To obtain the strain bound on the overall in-plane shear modulus, shear displacement is applied on the boundary233

of the RVE as shown in Fig. 6 (left) which reads234

u0
(r,θ,z) =

[
βr sin 2θ
βr cos 2θ

0

]
. (31)235

Similar to the previous case, the developed displacement fields in the medium result in the analytical form236

u(i)
r =

4∑

j=1

a
(i)
j �

(i)
j r

n
(i)
j sin(2θ) , u

(i)
θ =

4∑

j=1

�
(i)
j r

n
(i)
j cos(2θ) , (32)237

where the superscripts i = 1, 2 correspond to the fiber and matrix, respectively. The constants a
(i)
j are obtained238

similar to Eq. (28).239

The eight unknowns �
(1)
1 , �

(1)
2 , �

(1)
3 , �

(1)
4 , �

(2)
1 , �

(2)
2 , �

(2)
3 and �

(2)
4 can be determined via applying the240

boundary and interface conditions which read241

u
(1)
r , u

(1)
θ finite at r = 0 → �

(1)
3 = �

(1)
4 = 0 , (finite displacement at r = 0)

tr = kr �ur � → σ
(2)
rr (r1) + σ

(1)
rr (r1) = 2kr

[
u

(2)
r (r1) − u

(1)
r (r1)

]
, (traction average at r = r1)

tθ = kθ �uθ � → σ
(2)
rθ (r1) + σ

(1)
rθ (r1) = 2kθ

[
u

(2)
θ (r1) − u

(1)
θ (r1)

]
, (traction average at r = r1)

[
div σ

]
r
+ �tr � = 0 → −

σ θθ

r1
+ σ (2)

rr (r1) − σ (1)
rr (r1) = 0 , (traction equilibrium at r = r1)

[
div σ

]
θ

+ �tθ � = 0 →
1

r1

∂σ θθ

∂θ
+ σ

(2)
rθ (r1) − σ

(1)
rθ (r1) = 0 , (traction equilibrium at r = r1)

u
(2)
r (r2) = βr2 sin(2θ) and u

(2)
θ (r2) = βr2 cos(2θ) . (boundary condition at r = r2) .

(33)242

Further details regarding the construction of the system of equations are available in Appendix A.2. For an243

equivalent homogeneous medium with the same boundary conditions, the displacement field reads u
eq
r (r) =244

βr sin(2θ) and u
eq
θ (r) = βr cos(2θ). Having the stress and displacement fields, using Eq. (19), one can245
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calculate the average mechanical energy in the RVE and in the equivalent homogeneous medium246

U RVE =
β2

2

[
6µ2[λ2 + µ2]r

2
2

2λ2 + 3µ2
�

(2)
1 + 4µ2�

(2)
2 −

2[λ2 + µ2]

r2
2

�
(2)
4

]
,

U eq = 2β2Mµ .

(34)247

Considering U RVE = U eq results in a semi-explicit expression for the strain bound on the effective in-plane248

shear modulus249

Mµstrain =
1

4

[
6µ2[λ2 + µ2]r

2
2

2λ2 + 3µ2
�

(2)
1 + 4µ2�

(2)
2 −

2[λ2 + µ2]

r2
2

�
(2)
4

]
. (35)250

where �
(2)
1 , �

(2)
2 , �

(2)
3 and �

(2)
4 are the solution of the system of equations (A.6).251

3.2.4 Stress bound on the shear modulus252

Following the same methodology for the boundary value problem of Fig. 6 (right), the stress bound on the253

macroscopic in-plane shear modulus can be obtained. Consider an RVE subject to the traction field254

t0
(r,θ,z) =

[
β sin 2θ
β cos 2θ

0

]
. (36)255

The displacement fields in the constituents due to this boundary conditions are similar to Eq. (32). The eight256

unknowns �
(1)
1 , �

(1)
2 , �

(1)
3 , �

(1)
4 , �

(2)
1 , �

(2)
2 , �

(2)
3 and �

(2)
4 can be determined via applying the boundary and257

interface conditions which read258

u
(1)
r , u

(1)
θ finite at r = 0 → �

(1)
3 = �

(1)
4 = 0 , (finite displacement at r = 0)

tr = kr �ur � → σ
(2)
rr (r1) + σ

(1)
rr (r1) = 2kr

[
u

(2)
r (r1) − u

(1)
r (r1)

]
, (traction average at r = r1)

tθ = kθ �uθ � → σ
(2)
rθ (r1) + σ

(1)
rθ (r1) = 2kθ

[
u

(2)
θ (r1) − u

(1)
θ (r1)

]
, (traction average at r = r1)

[
div σ

]
r
+ �tr � = 0 → −

σ θθ

r1
+ σ (2)

rr (r1) − σ (1)
rr (r1) = 0 , (traction equilibrium at r = r1)

[
div σ

]
θ

+ �tθ � = 0 →
1

r1

∂σ θθ

∂θ
+ σ

(2)
rθ (r1) − σ

(1)
rθ (r1) = 0 , (traction equilibrium at r = r1)

σ
(2)
rr (r2) = β sin(2θ) and σ

(2)
rθ (r2) = β cos(2θ) . (boundary condition at r = r2) .

(37)259

Further details regarding the construction of the system of equations are available in Appendix A.3. For an260

equivalent homogeneous medium with the same boundary conditions, the displacement field reads261

u
eq
r (r) =

β

2Mµ
r sin(2θ) , u

eq
θ (r) =

β

2Mµ
r cos(2θ) , u

eq
z (r) = 0. (38)262

Using Eq. (19), the same strategy can be employed to define the energy stored in the RVE and the equivalent263

homogeneous medium.264

U RVE =
β2

2

[
3[λ2 + µ2]r

2
2

2λ2 + 3µ2
�

(2)
1 + 2�

(2)
2 +

λ2 + 3µ2

µ2r2
2

�
(2)
4

]
,

U eq =
β2

2Mµ
.

(39)265
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Fig. 7 Illustration of inhomogeneity with general interface inside an infinite matrix (left) and RVE of fiber composite with general
interface (right)

Considering U RVE = U eq results in a semi-explicit expression for the stress bound on the effective in-plane266

shear modulus267

Mµstress =

[
3[λ2 + µ2]r

2
2

2λ2 + 3µ2
�

(2)
1 + 2�

(2)
2 +

λ2 + 3µ2

µ2r2
2

�
(2)
4

]−1

. (40)268

where �
(2)
1 , �

(2)
2 , �

(2)
3 and �

(2)
4 are the solution of the system of equations (A.7).269

3.3 Modified Mori–Tanaka method270

Analytical estimates for the effective properties of fiber composites with general interfaces have been developed271

in [65]. Using energy principles, Duan et al. [108] proposed to substitute the fiber/interface system with272

an equivalent fiber to predict the overall behavior of the medium. Both methodologies provide reasonable273

estimates compared to full field homogenization strategies, like the periodic homogenization framework, but274

they cannot provide information about the local fields that are developed in various phases of the medium,275

including the interface. Our new methodology here not only obtains the effective properties, but also defines276

the concentration tensors in each phase. The primary advantage of the concentration tensors is that they277

link the macroscopic fields with the average fields in the matrix, fiber and interface hence, furnishing better278

insights into the microstructural response of composites. For composites with interfaces, the main idea is to279

identify the global interaction tensors for the fiber/interface system by solving the Eshelby’s inhomogeneity280

problem [109]. Such investigation is motivated by similar techniques in the literature for coated particles or281

fibers [98,110–112]. Note the Mori–Tanaka estimates can lose major symmetry and thus results in physically282

meaningless estimates. However, the loss of symmetry in the Mori–Tanaka estimates appears in composites283

with different shapes of fibers, or fibers of the same shape but different orientation (non-uniform orientation284

distribution function). For aligned long fiber composites, it has been shown analytically that Mori–Tanaka285

continues to produce effective properties that respect the major symmetry [113]. This limitation of the Mori–286

Tanaka estimates holds regardless of interfaces.287

3.3.1 General framework288

Figure 7 (left) illustrates an inhomogeneity with general ellipsoidal shape occupying the space
1 with elasticity289

modulus L(1) surrounded by a general interface I. An infinite matrix occupying the space 
2 with elasticity290

tensor L(2) is embedding the inhomogeneity/interface system. The matrix is subjected to a far field linear291

displacement condition u0 = ε
0 · x. The equilibrium equations throughout the medium are given in Eq. (4)292

and further detailed in [65].293

In this contribution, similar to [108] we propose to treat the fiber/interface system as a unique phase, but294

instead of identifying the response, we identify a strain interaction tensor T and a stress–strain interaction295

tensor H as296

〈ε〉+
1
= T :ε0 =

1

2|
1|

∫

I

[u+ ⊗ n + n ⊗ u+] dA and297
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〈σ 〉+
1
= H :ε0 =

1

|
1|

∫


1

σ
− dV +

1

|
1|

∫

I

σ dA . (41)298

In addition, one can identify the pure fiber’s concentration tensor as299

〈ε〉−
1
= T (1):ε0 =

1

2|
1|

∫

I

[u− ⊗ n + n ⊗ u−] dA . (42)300

More precisely, 〈ε〉−
1
corresponds to the strain field in the fiber itself, whereas 〈ε〉+
1

corresponds to the strain301

field in the fiber/interface system. This case study is an extension of the Eshelby’s inhomogeneity problem,302

and the tensors T and H are extremely useful to develop the mean-field theories for composites [98]. Consider303

a RVE of fiber composite with the volume of V and the boundary of ∂B occupying the space B shown in304

Fig. 7 (right). The RVE is subjected to a macroscopic strain M
ε. The fiber with the volume of V1 occupies305

the space B1, and the matrix with the volume of V2 occupies the space B2. Obviously, B = B1 ∪ B2 and306

V = V1 + V2. The fiber volume fraction is f = V1/V , and accordingly, Eq. (7) can be rewritten as307

M
ε =

1

V

∫

B

ε dV +
1

2V

∫

I

[
�u� ⊗ n + n ⊗ �u�

]
dA = [1 − f ]ε(2) + f ε

(1) + ε̂ ,

M
σ =

1

V

∫

B

σ dV +
1

V

∫

I

σ dA = [1 − f ]L(2):ε(2) + f L(1):ε(1) + σ̂ ,

(43)308

in which309

ε
(1) =

1

V1

∫

B1

ε dV , ε
(2) =

1

V2

∫

B2

ε dV and ε̂ =
1

2V

∫

I

[
�u� ⊗ n + n ⊗ �u�

]
dA , (44)310

are the average strains in the fiber, matrix and interface, respectively. The average stress on the interface reads311

σ̂ =
1

V

∫

I

σ dA . (45)312

Exploiting the interaction tensors (41) and (42), the Mori–Tanaka scheme reads313

ε
(1) = T (1):ε(2) , ε

(1) +
1

f
ε̂ = T :ε(2) , L(1):ε(1) +

1

f
σ̂ = H :ε(2) . (46)314

Thus, Eq. (43)1 yields315

M
ε =

[
[1 − f ]I + f T

]
:ε(2) or ε

(2) = A(2):M
ε , (47)316

where I is the fourth-order identity tensor and A(2) = [[1 − f ]I + f T ]−1. On the other hand, Eq. (43)2317

yields318

M
σ =

[
[1 − f ]L(2) + f H

]
:ε(2) =

[
[1 − f ]L(2) + f H

]
: A(2):M

ε . (48)319

Thus, the macroscopic stiffness tensor is given by the expression320

ML =
[
[1 − f ]L(2) + f H

]
: A(2) . (49)321

The properties of the equivalent fiber employed in [66] can be recovered according to322

Leq = H :T−1 . (50)323

The macroscopic elasticity tensors obtained by our proposed method are formally identical to those given324

in [108]. The conceptual difference is that instead of seeking the properties of the equivalent fiber, the target325

is to identify the global strain and stress tensors of the fiber/interface system. For a given macroscopic strain326

M
ε, the average strain and stress in the fiber and matrix read327

ε
(1) = T (1): A(2):M

ε , σ
(1) = L(1):ε(1) = L(1):T (1): A(2):M

ε ,

ε
(2) = A(2):M

ε , σ
(2) = L(2):ε(2) = L(2): A(2):M

ε .
(51)328
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Using Eq. (46), the average strain and stress on the interface read329

ε̂ = f
[

T − T (1)
]
: A(2):M

ε , σ̂ = f
[

H − L(1):T (1)
]
: A(2):M

ε . (52)330

So far, the only missing parts to complete the homogenization framework are the interaction tensors T , H and331

T (1). To this end, the extended Eshelby’s problem is solved analytically for three boundary value problems332

similar to those described by Hashin [114] in the composite cylinders assemblage approach. In fiber composites333

with isotropic or transversely isotropic phases, the strain and stress–strain interaction tensors present transverse334

isotropy. In Voigt notation, they take the forms335

T =

⎡
⎢⎢⎢⎢⎢⎣

T11 T11 − T44 T13 0 0 0
T11 − T44 T11 T13 0 0 0

0 0 1 0 0 0
0 0 0 T44 0 0
0 0 0 0 T55 0
0 0 0 0 0 T55

⎤
⎥⎥⎥⎥⎥⎦

,336

H =

⎡
⎢⎢⎢⎢⎢⎣

H11 H11 − 2H44 H13 0 0 0
H11 − 2H44 H11 H13 0 0 0

H31 H31 H33 0 0 0
0 0 0 H44 0 0
0 0 0 0 H55 0
0 0 0 0 0 H55

⎤
⎥⎥⎥⎥⎥⎦

, (53)337

see [112] for more details on T . Note that T (1) has similar structure with T . Using this general representation,338

the three boundary value problems to identify the interaction tensors will be introduced.339

3.3.1.1 Axial shear conditionsFor this case, the far field displacement and strain fields applied to the RVE in340

cylindrical coordinates read341

u0
(r,θ,z) =

⎡
⎣

0
0

βr cos θ

⎤
⎦ , ε

0
(r,θ,z) =

⎡
⎢⎢⎢⎢⎣

0 0
β

2
cos θ

0 0 −
β

2
sin θ

β

2
cos θ −

β

2
sin θ 0

⎤
⎥⎥⎥⎥⎦

. (54)342

For these boundary conditions, the important displacements and stresses in the matrix, fiber and interface are343

given by344

u
(i)
z (r, θ) = βrU

(i)
z (r) cos θ with U

(i)
z (r) = �

(i)
1 + �

(i)
2

1

[r/r1]2
,

σ
(i)
r z (r, θ) = β �

(i)
r z (r) cos θ with �

(i)
r z (r) = µ

(i)
ax

[
�

(i)
1 − �

(i)
2

1

[r/r1]2

]
,

σ θ z(θ) = β �θ z sin θ with �θ z = −
µax

2

[
�

(1)
1 + �

(2)
1 + �

(1)
2 + �

(2)
2

]
,

(55)345

for i = 1, 2 where i = 1 corresponds to the fiber and i = 2 corresponds to the matrix. The unknowns that346

need to be defined are �
(1)
1 , �

(1)
2 , �

(2)
1 and �

(2)
2 . The boundary and interface conditions lead to the following347

equations348

u
(1)
z finite at r = 0 → �

(1)
2 = 0 ,

t z = kz �uz� → �
(2)
r z (r1) + �

(1)
r z (r1) = 2kzr1

[
U

(2)
z (r1) − U

(1)
z (r1)

]
,

[
div σ

]
z
+ �tz� = 0 →

1

r1

∂σ θ z(θ)

∂θ
+ σ (2)

r z (r1) − σ (1)
r z (r1) = 0 →

�θ z

r1
+ �(2)

r z (r1) − �(1)
r z (r1) = 0 ,

u
(2)
z (r → ∞) = βr cos θ → �

(2)
1 = 1 .

(56)349
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Solving the above linear system, the average strain and stress in the fiber/interface system read350

〈ε〉−
1
= U (1)

z (r1) ε
0 , 〈ε〉+
1

= U (2)
z (r1) ε

0 , 〈σ 〉+
1
= �(2)

r z (r1) ε
0. (57)351

Since H is a stress-type tensor and the applied shear angle is β, the term H55 must be equal to the generated352

stress on the fiber/interface system. Consequently, the axial shear interaction terms are353

T
(1)
55 = �

(1)
1 , T55 = 1 + �

(2)
2 , H55 = µ(2)

ax

[
1 − �

(2)
2

]
. (58)354

3.3.1.2 Transverse shear conditionsFor this case, the far field displacement and strain fields applied to the RVE355

in the cylindrical coordinates read356

u0
(r,θ,z) =

⎡
⎣

βr sin 2θ

βr cos 2θ

0

⎤
⎦ , ε

0
(r,θ,z) =

⎡
⎣

β sin 2θ β cos 2θ 0
β cos 2θ −β sin 2θ 0

0 0 0

⎤
⎦ . (59)357

For these boundary conditions, the important displacements and stresses at each phase are given by the general358

expressions359

u(i)
r (r, θ) = β r U (i)

r (r) sin 2θ with U (i)
r (r) =

κ
(i)
tr − µ

(i)
tr

2κ
(i)
tr + µ

(i)
tr

[r/r1]
2�

(i)
1 + �

(i)
2

−
1

[r/r1]4
�

(i)
3 +

κ
(i)
tr + µ

(i)
tr

µ
(i)
tr

1

[r/r1]2
�

(i)
4 ,

u
(i)
θ (r, θ) = β r U

(i)
θ (r) cos 2θ with U

(i)
θ (r) = [r/r1]

2�
(i)
1 + �

(i)
2 +

1

[r/r1]4
�

(i)
3 +

1

[r/r1]2
�

(i)
4 ,

σ (i)
rr (r, θ) = β �(i)

rr (r) sin 2θ with �(i)
rr (r) = 2µ

(i)
tr �

(i)
2 + 6µ

(i)
tr

1

[r/r1]4
�

(i)
3 − 4κ

(i)
tr

1

[r/r1]2
�

(i)
4 ,

σ
(i)
rθ (r, θ) = β �

(i)
rθ (r) cos 2θ with �

(i)
rθ (r) =

6κ
(i)
tr µ

(i)
tr

2κ
(i)
tr + µ

(i)
tr

[r/r1]
2�

(i)
1 + 2µ

(i)
tr �

(i)
2

− 6µ
(i)
tr

1

[r/r1]4
�

(i)
3 + 2κ

(i)
tr

1

[r/r1]2
�

(i)
4 ,

ur (θ) = β r1 U r sin 2θ with U r =
U

(1)
r (r1) + U

(2)
r (r1)

2
,

uθ (θ) = β r1 U θ cos 2θ with U θ =
U

(1)
θ (r1) + U

(2)
θ (r1)

2
,

σ θθ (θ) = β �θθ sin 2θ with �θθ = m
[
U r − 2U θ

]
,

(60)360

for i = 1, 2 where i = 1 corresponds to the fiber and i = 2 corresponds to the matrix. The unknowns that361

need to be defined are �
(1)
1 , �(1)

2 , �(1)
3 , �(1)

4 , �(2)
1 , �(2)

2 , �(2)
3 and �

(2)
4 . The boundary and interface conditions362

necessitate the following equations363

u(1)
r , u

(1)
θ finite at r = 0 → �

(1)
3 = �

(1)
4 = 0 ,

tr = kr �ur � → �(2)
rr (r1) + �(1)

rr (r1) = 2krr1

[
U (2)

r (r1) − U (1)
r (r1)

]
,

tθ = kθ �uθ � → �
(2)
rθ (r1) + �

(1)
rθ (r1) = 2kθr1

[
U

(2)
θ (r1) − U

(1)
θ (r1)

]
,

[
div σ

]
r
+ �tr � = 0 → −

σ θθ (θ)

r1
+ σ (2)

rr (r1) − σ (1)
rr (r1) = 0 → −

�θθ

r1
+ �(2)

rr (r1) − �(1)
rr (r1) = 0 ,

[
div σ

]
θ

+ �tθ � = 0 →
1

r1

∂σ θθ (θ)

∂θ
+ σ

(2)
rθ (r1) − σ

(1)
rθ (r1) = 0 →

2 �θθ

r1
+ �

(2)
rθ (r1) − �

(1)
rθ (r1) = 0 ,

u(2)
r (r → ∞) = βr sin 2θ and u

(2)
θ (r → ∞) = βr cos 2θ → �

(2)
1 = 0 and �

(2)
2 = 1 .

364

(61)365
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Solving the above linear system, the average strain and stress in the fiber/interface system are366

〈ε〉−
1
=

1

2

[
U (1)

r (r1) + U
(1)
θ (r1)

]
ε

0 , 〈ε〉+
1
=

1

2

[
U (2)

r (r1) + U
(2)
θ (r1)

]
ε

0 ,367

〈σ 〉+
1
=

1

2

[
�(2)

rr (r1) + �
(2)
rθ (r1)

]
ε

0 . (62)368

Again, since H is a stress-type tensor and the applied shear angle is 2β, the term H44 must be equal to the half369

of the generated stress on the fiber/interface system. Consequently, the transverse shear interaction terms are370

T
(1)
44 =

3κ
(1)
tr

4κ
(1)
tr + 2µ

(1)
tr

�
(1)
1 + �

(1)
2 , T44 = 1 +

κ
(2)
tr + 2µ

(2)
tr

2µ
(2)
tr

�
(2)
4 ,371

H44 = µ
(2)
tr −

κ
(2)
tr

2
�

(2)
4 . (63)372

3.3.1.3 Axisymmetric conditionsFor this case, the far field displacement and strain fields applied to the RVE in373

the cylindrical coordinates read374

u0
(r,θ,z) =

⎡
⎣

eT r

0
eAz

⎤
⎦ , ε

0
(r,θ,z) =

⎡
⎣

eT 0 0
0 eT 0
0 0 eA

⎤
⎦ . (64)375

For these boundary conditions, the important displacements and stresses in the matrix, fiber and the interface376

are given by377

u
(i)
z (z) = eAz ,

u
(i)
r (r) = eT rU

(i)
r (r) with U

(i)
r (r) =

[
�

(i)
1 + �

(i)
2

1

[r/r1]2

]
,

σ
(i)
rr (r) = eT �

(i)
rr (r) + eAl(i) with �

(i)
rr (r) = 2κ

(i)
tr �

(i)
1 − 2µ

(i)
tr �

(i)
2

1

[r/r1]2
,

σ
(i)
zz = eT �

(i)
zz + eAn(i) with �

(i)
zz = 2l(i)�

(i)
1 ,

σ θθ = eT �θθ + eAl with �θθ =
m

2

[
�

(1)
1 + �

(2)
1 + �

(1)
2 + �

(2)
2

]
,

σ zz = eT �zz + eAn with �zz =
l

2

[
�

(1)
1 + �

(2)
1 + �

(1)
2 + �

(2)
2

]
,

(65)378

for i = 1, 2 where i = 1 corresponds to the fiber and i = 2 corresponds to the matrix. The unknowns that379

need to be defined are �
(1)
1 , �

(1)
2 , �

(2)
1 and �

(2)
2 . The boundary and interface conditions necessitate380

u(1)
r finite at r = 0 → �

(1)
2 = 0 ,

tr = kr �ur � → σ (2)
rr (r1) + σ (1)

rr (r1) = 2kr

[
u(2)

r (r1) − u(1)
r (r1)

]
,

[
div σ

]
r
+ �tr � = 0 → −

σ θθ

r1
+ σ (2)

rr (r1) − σ (1)
rr (r1) = 0 ,

u(2)
r (r → ∞) = eT r → �

(2)
1 = 1 .

(66)381

Solving the above linear system, the average strain and stress in the fiber/interface system are382

〈ε〉−
1
=

⎡
⎣

U
(1)
r (r1) eT 0 0

0 U
(1)
r (r1) eT 0

0 0 eA

⎤
⎦ , 〈ε〉+
1

=

⎡
⎣

U
(2)
r (r1) eT 0 0

0 U
(2)
r (r1) eT 0

0 0 eA

⎤
⎦ ,

〈σ 〉+
1
=

⎡
⎢⎢⎣

�
(2)
rr (r1) 0 0

0 �
(2)
rr (r1) 0

0 0 �
(1)
zz +

2�zz

r1

⎤
⎥⎥⎦ eT +

⎡
⎢⎢⎣

l(2) 0 0
0 l(2) 0

0 0 n(1) +
2n

r1

⎤
⎥⎥⎦ eA .

(67)383

At this stage, two cases are examined:384
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Fig. 8 Mesh quality of the RVE for finite element analysis. The domain is discretized using biquadratic Lagrange elements

• eA = 0 and eT = 1: The constants from the solution of the linear system are denoted as �
(1)
11 and �

(2)
21 . For385

this condition, the general forms of the dilute concentration tensors in Eq. (53) permit to write386

〈εxx 〉
−

1

= T
(1)
11 + [T

(1)
11 − T

(1)
44 ] , 〈εxx 〉

+

1

= T11 + [T11 − T44] ,

〈σxx 〉
+

1

= H11 + [H11 − 2H44] , 〈σzz〉
+

1

= 2H31 .
(68)387

From (67), clearly we have388

T
(1)

11 =
1

2

[
�

(1)
11 + T

(1)
44

]
, T11 =

1

2

[
1 + �

(2)
21 + T44

]
,

H11 = κ
(2)
tr − µ

(2)
tr �

(2)
21 + H44 , H31 = l(1)�

(1)
11 +

l

2r1

[
1 + �

(1)
11 + �

(2)
21

]
.

(69)389

• eA = eT = 1: The constants from the solution of the linear system are denoted as �
(1)
12 and �

(2)
22 . For this390

condition, the general forms of the dilute concentration tensors in Eq. (53) permit to write391

〈εxx 〉
−

1

= T
(1)
11 +

[
T

(1)
11 − T

(1)
44

]
+ T

(1)
13 , 〈εxx 〉

+

1

= T11 +
[
T11 − T44

]
+ T13 ,

〈σxx 〉
+

1

= H11 +
[

H11 − 2H44

]
+ H13 , 〈σzz〉

+

1

= 2H31 + H33 .
(70)392

Combining the last expression with (67) and (69) yields393

T
(1)
13 = �

(1)
12 + T

(1)
44 − 2T

(1)
11 ,

T13 = 1 + �
(2)
22 + T44 − 2T11 ,

H13 = 2κ
(2)
tr − 2µ

(2)
tr �

(2)
22 + l(2) + 2H44 − 2H11 ,

H33 = 2l(1)�
(1)
12 +

l

r1

[
1 + �

(1)
12 + �

(2)
22

]
+ n(1) +

2n

r1
− 2H31 .

(71)394

Expressions (58), (63), (69) and (71) provide all the required coefficients for the interaction tensors, which395

in turn can be implemented in the Mori–Tanaka scheme to identify the macroscopic elasticity tensor of fiber396

composites. The components of ML are expressed as given in Eq. (10).397

4 Numerical results398

The goal of this section is to evaluate the performance of the proposed analytical solutions through a series399

of numerical examples. In doing so, the influence of the general interfaces on the overall material response400

is investigated and compared against computational simulations using the finite element method elaborated401

in [91]. The computational analysis is carried out using our in-house finite element code applied to the RVE402

discretized by biquadratic Lagrange elements as shown in Fig. 8. For all examples, the solution procedures403

are robust and show asymptotically the quadratic rate of convergence associated with the Newton–Raphson404

scheme. For all the cases, the volume fraction f = 30% is assumed. The RVE size varies from 0.001 to 1000,405

and three different stiffness ratios of 0.1, 1 and 10 are studied. The stiffness ratio denoted as incl./matr. is the406
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Fig. 9 The effective bulk and shear moduli versus size for incl./matr. = 0.1. The lines correspond to the analytical solutions, and
dots correspond to the numerical results using the finite element method. “CCA” and “GSCM” indicate the effective properties
obtained via the solution proposed in Sects. 3.2.1 and 3.2.2. “Upper Bound” and “Lower Bound” refer to our proposed bounds
in Sects. 3.2.3 and 3.2.4. “MT” corresponds to our proposed solution in Sect. 3.3

ratio of the inclusion to matrix Lamé parameters. The stiffness ratio 0.1 corresponds to a matrix 10 times stiffer407

than the inclusion and in the limit of incl./matr. → 0, the inclusion resembles a void. The stiffness ratio 10408

corresponds to an inclusion 10 times stiffer than the matrix and in the limit of incl./matr. → ∞, the inclusion409

acts as being rigid. Clearly, the stiffness ratio 1 represents identical inclusion and matrix. Throughout the410

numerical examples, the matrix Lamé parameters are λ2 = µ2 = 1 and the inclusion Lamé parameters vary in411

accordance with the prescribed stiffness ratios. The interface in-plane resistance µ corresponds to the resistance412

of the interface against stretch and is set to µ = 1 indicating a low in-plane resistance and µ = 100 indicating413

a very high resistance. On the other hand, the two considered values for the orthogonal interface resistance414

are k = 1 indicating a low opening resistance and k = 100 indicating a high opening resistance. In the limit415

k → ∞, the interface remains coherent and does not allow for opening. On the contrary, k → 0 indicates416

no orthogonal resistance and the fiber behaves entirely detached from the matrix. It shall be emphasized that417

depending on the choice of the general interface parameters any of the perfect, elastic or cohesive interface418

models could be recovered, as shown in Fig. 1. The conditions µ �= 0 and k → ∞ recover the elastic interface419

model. The cohesive interface is recovered when µ = 0 and k � ∞. Finally, the perfect interface model is420

recovered when µ = 0 and k → ∞.421

Figures 9, 10 and 11 illustrate the effective bulk modulus Mκ and shear modulus Mµ versus size for different422

stiffness ratios. Each column corresponds to a specific in-plane resistance µ, and each row corresponds to a423

specific orthogonal resistance k. The solid straight black line shows the effective response due to the perfect424

interface. Lines indicate the analytical solutions corresponding to the analytical approaches developed in425

Sects. 3.2.1 and 3.3. Red circular points and blue rectangular points correspond to computational results using426

the finite element method obtained via prescribing DBC and TBC, respectively.427

A remarkable agreement between the analytical solutions and the computational results are consistently428

observed for all the examples. For all the cases, a size-dependent response is observed due to the presence of429

the general interface. For the bulk modulus, all the solutions render a consistent behavior with respect to the430

perfect interface solution. The results coincide with the perfect interface solution at small sizes. Increasing431

the size results in deviation from the perfect interface solution until a critical size at which an extremum is432

reached. Further increase in size yields asymptotic convergence of the results to the perfect interface solution433

which is due to the diminished interface effects at large sizes. For incl./matr. = 0.1, the results corresponding434
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Fig. 10 The effective bulk and shear moduli versus size for incl./matr. = 1. The lines correspond to the analytical solutions, and
dots correspond to the numerical results using the finite element method. “CCA” and “GSCM” indicate the effective properties
obtained via the solution proposed in Sects. 3.2.1 and 3.2.2 . “Upper Bound” and “Lower Bound” refer to our proposed bounds
in Sects. 3.2.3 and 3.2.4 . “MT” corresponds to our proposed solution in Sect. 3.3.

Fig. 11 The effective bulk and shear moduli versus size for incl./matr. = 10. The lines correspond to the analytical solutions, and
dots correspond to the numerical results using the finite element method. “CCA” and “GSCM” indicate the effective properties
obtained via the solution proposed in Sects. 3.2.1 and 3.2.2 . “Upper Bound” and “Lower Bound” refer to our proposed bounds
in Sects. 3.2.3 and 3.2.4 . “MT” corresponds to our proposed solution in Sect. 3.3
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to general interface always overestimate to those obtained from the perfect interface model. However, for the435

other stiffness ratios, depending on the interface parameters, the results render either a weaker or a stronger436

response compared to the perfect interface solution. Evidently, if the interface parameters are taken enough437

large, the response due to the general interface is stiffer than those of the perfect interface. Overall, an important438

observation and especially useful for computational material design is that in the presence of interfaces, even439

if the inclusion is identical to the matrix, various combinations of parameters could result in substantially440

different but also size-dependent overall material behavior. For the shear modulus, there is perfect agreement441

between the upper bound and DBC and the lower bound and TBC. When incl./matr. = 0.1, the bounds442

never coincide. When incl./matr. = 1 in Fig. 10, the upper and the lower bounds converge at larger sizes since443

incl./matr. = 1 implies identical matrix and inclusion and hence, identical responses are seen when the interface444

effects become negligible enough at large sizes. For incl./matr. = 10, the bounds tend to approach to each445

other until they coincide at a specific sizes and then they distant from each other as size increases. A particular446

significant observation is that the generalized self-consistent method and the modified Mori–Tanaka method447

do not provide similar estimates for the effective shear modulus. For incl./matr. = 0.1 and incl./matr. = 1, the448

response obtained from GSCM underestimates that of MT method. However, when incl./matr. = 10, the results449

corresponding to GSCM underestimate the ones obtained from MT before the bounds coincide, whereas the450

opposite story holds after the bounds coincidence.451

Remark In view of the behavior of the effective bulk modulus Mκ , it is observed that the general interface452

model at both limits of small and large sizes converges to the perfect interface model. The interface effect is453

decreasing when increasing the size, and thus, its behavior at large sizes is fairly obvious. At small scales,454

however, further discussion is required to justify the influence of the interface on the overall material response.455

The effective behavior of the general interface model can be explained by the fact that it combines the two456

opposing cohesive and elastic interface models, schematically illustrated in Fig. 1. The elastic interface model457

results in a smaller-stronger effect in contrast to the smaller-weaker effect of the cohesive interface model.458

At large sizes, neither of the interface effects is present. But at small sizes, both of the interface effects are459

present and eventually cancel each other. Furthermore, we can elaborate on this observation from an analytical460

perspective. To do so, we re-express the effective bulk modulus (25) as461

Mκ = λ2 + µ2 +
f

1[
λ1 + µ1

][
4kr3

1 + 2µr1

]
+ 4kµr2

1

4r2
1

[
2λ1 + 2µ1 + kr1

]
+ 2µr1

−
[
λ2 + µ2

]
+

1 − f

λ2 + 2µ2

,462

thereby gaining a better insight on Mκ in terms of r1. This relation in both limits simplifies to463

r → 0 or r → ∞ ⇒ Mκ = λ2 + µ2 +
f

1

[λ1 + µ1] − [λ2 + µ2]
+

1 − f

λ2 + 2µ2

(72)464

which corresponds exactly to the solution associated with the perfect interface model.465

Inspired by the observations made throughout the numerical examples, it is possible to distinguish between466

two dissimilar bounds on the overall behavior of the microstructure, namely size-dependent bounds and ultimate467

bounds. Size-dependent bounds are the bounds on the effective behavior of the microstructure at any given468

size. The upper and lower size-dependent bounds correspond to the solution of the boundary value problem469

associated with DBC and TBC, respectively. On the other hand, we also observe that the macroscopic response470

is always bounded between two specific values regardless of the size of the microstructure and thus, we refer to471

them as ultimate bounds. In the case of a stiff inclusion within a more compliant matrix such as incl./matr. = 10472

shown in Fig. 11, the ultimate bounds are reached at extreme sizes. However, the ultimate bounds may be473

reached at critical sizes and not necessarily at the limits, see, for instance, Fig. 9. In fact, Fig. 12 elucidates the474

notions of ultimate and size-dependent bounds schematically. Size-dependent bounds are local in the sense475

that for a specific interface and material parameters, they vary with respect to size. In contrast, the ultimate476

bounds are independent of size and they entirely depend on the interface and bulk material properties. As477

pointed out earlier, the size-dependent bounds coincide in the case of the effective bulk modulus Mκ and are478

only distinct in the case of the effective shear modulus Mµ. One can mention that this conclusion for general479

interface is in agreement with that derived by Hashin and Rosen for the case of a perfect interface [107].480
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Fig. 12 Schematic illustration of size-dependent and ultimate bounds. The size-dependent bounds are the bounds on the effective
behavior of the microstructure at any given size. The ultimate bounds are independent of size, and they entirely depend on the
interface and bulk material properties

Fig. 13 Effective moduli versus dimensionless interface parameters

To pinpoint the effects of the interface parameters on the overall material response of composites with481

general interfaces, Fig. 13 illustrates the variation of the effective moduli versus interface parameters. Each482

column corresponds to a specific stiffness ratio. The top row corresponds to effective bulk modulus Mκ , and the483

bottom row corresponds to the effective shear modulus Mµ. Note that the interface orthogonal resistance k has484

the inverse length dimension and thus multiplied to the size to become dimensionless. On the other hand, the485

interface elastic parameter µ has the length dimension and thus divided by the size to become dimensionless.486

For the effective bulk modulus, increasing any of the interface parameters results in stiffer material response.487

For two extreme cases of very strong and very weak interfaces, the associated overall response is similar for488

all stiffness ratios. On the other hand, for the shear modulus, when incl./matr. = 0.1, increasing the interface489

parameters stiffens the response. For incl./matr. = 1, the overall response shows no sensitivity to µ, whereas490

increasing k yields stronger response. An interesting observation arises for incl./matr. = 10 where increasing491

k results in stiffer response but increasing µ might lead to either softer or stiffer response depending on the492

size.493

Figures 14 and 15 illustrate the stress distribution within the microstructure at different sizes and for494

different stiffness ratios. More precisely, the color patterns display [σ xx + σ yy]/2 in Fig. 14 and [σ ]xy in495

Fig. 15. This choice is made to provide meaningful stress distributions for each case. In the case of Fig. 14,496

volumetric expansion is prescribed on the RVE to compute the effective bulk modulus Mκ and thus, a pressure-497
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Fig. 14 Illustration of the stress distribution within the microstructure due to isotropic expansion at different sizes and for different
stiffness ratios. The upper row of stress distributions on each graph correspond to DBC and the lower row to TBC

like quantity [σ xx +σ yy]/2 is more relevant and informative. On the other hand, in the case of Fig. 15, a simple498

shear is prescribed on the RVE to compute the effective shear modulus Mµ in which case the shear component499

of the stress [σ ]xy is a more appropriate quantity to look at. Obviously, for the sake of a better presentation, all500

the RVEs are scaled to the same size. On each graph, the upper row and lower row show the stress distributions501

corresponding to DBC and TBC, respectively. Both figures compare the cases with the interface parameters502

k = 100 and µ = 1 from Figs. 9, 10 and 11. For the expansion case in Fig. 14, the stress patterns due to DBC503
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Fig. 15 Illustration of the stress distribution within the microstructure due to simple shear at different sizes and for different
stiffness ratios. The upper row of stress distributions on each graph corresponds to DBC, and the lower row to TBC

and TBC are identical, and thus, the effective bulk modulus Mκ is same, at any given size. But that is not the504

case for the effective shear modulus. For the non-coinciding cases, the stress due to DBC always overestimates505

the stress due to TBC and hence stiffer overall response. For the coinciding cases, the stresses due to DBC506

and TBC are identical which justifies the same overall response. Moreover, for incl./matr. = 0.1, the stress in507

the fiber is less than the matrix at any size. For incl./matr. = 1, the same story holds at small sizes, whereas508

at large size, the stresses become similar since interface effects become negligible and the bulk materials are509
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Fig. 16 Comparison of the analytical and numerical stress distributions within the RVE at different sizes for incl./matr. = 0.1.
On each block, the top microstructures corresponds to the local stress distribution due to DBC and TBC. The analytical stress
distribution is shown at the center. The bottom microstructures render the average of the computational stresses due to DBC and
TBC

identical. Finally, when incl./matr. = 10, fiber undergoes less stress than the matrix at small sizes, whereas the510

opposite story holds at large sizes.511

A significant feature of this contribution is that our novel formalism through the modified Mori–Tanaka512

approach does not only determine the overall response of composites, but also it provides information about the513

local fields for each phase of the medium. The purpose of the next set of examples is to evaluate the analytical514

stress fields and compare them against the associated numerical solutions. Figures 16, 17 and 18 provide a515

thorough comparison between the numerical and analytical stress distributions for different stiffness ratios at516

different sizes. In each figure, the rows correspond to specific sizes, whereas the columns correspond to the517

deformation type. Similar to Figs. 14 and 15, the stress component of the interest for the expansion and shear518

deformations are [σ xx + σ yy]/2 and [σ xy], respectively. On each block, the top microstructures render the519

computational stress distribution due to DBC and TBC obtained from the finite element method. The analytical520

stress distribution is shown at the center of each block. Since our proposed analytical approach determines the521

average stress in the constituents, the bottom microstructures render the computational average stresses due to522

DBC and TBC suitable for comparison with analytical stresses. For the sake of clarity, the value of the average523
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Fig. 17 Comparison of the analytical and numerical stress distributions within the RVE at different sizes for incl./matr. = 1.
On each block, the top microstructures correspond to the local stress distribution due to DBC and TBC. The analytical stress
distribution is shown at the center. The bottom microstructures render the average of the computational stresses due to DBC and
TBC

stresses in the inclusion and the matrix is shown at the bottom of each microstructure. For the expansion case,524

the analytical stress is outstandingly precise and the stresses in the inclusion and matrix are exactly similar to525

the computational stresses. However, this is not the case for the shear deformation where various conclusions526

can be drawn. When incl./matr. = 0.1, the average stress due to DBC overestimates the analytical stress in the527

matrix. On the other hand, the average stress due to TBC underestimates the analytical stress in the matrix.528

For the stress in the inclusion, TBC results in the highest average stress and DBC renders the lowest average529

stress with the analytical stress being in between. The same story holds for incl./matr. = 1 when size is small.530

When size is large, both the analytical and computational stresses resemble which conforms to the coinciding531

bounds at large sizes in Fig. 15. For incl./matr. = 10, when size = 0.01, the stress due to DBC is the highest in532

the matrix and the lowest in the inclusion. TBC renders the highest inclusion average stress and lowest matrix533

average stress. The analytical stress in both the inclusion and the matrix are between those obtained by DBC534

and TBC. Finally, for incl./matr. = 10 and size = 100, both analytical and computational average stresses are535

similar in the matrix. However, the average stress in the inclusion is highest for DBC and the lowest for TBC536

with the analytical stress being in between.537
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Fig. 18 Comparison of the analytical and numerical stress distributions within the RVE at different sizes for incl./matr. = 10.
On each block, the top microstructures correspond to the local stress distribution due to DBC and TBC. The analytical stress
distribution is shown at the center. The bottom microstructures render the average of the computational stresses due to DBC and
TBC

5 Conclusion and outlook538

This contribution establishes novel bounds and estimates to determine the overall behavior of composites539

through homogenization enhanced by general interfaces and hence the size effects. The bounds are obtained540

via extension of the CCA approach to account for interfaces and by prescribing displacement-type and traction-541

type boundary conditions on the microstructure, respectively. Our proposed strategy to compute an estimate542

for the effective material response, on the other hand, extends the Mori–Tanaka approach. Not only does our543

methodology furnish accurate results for the effective properties, but also it provides additional information544

about the local fields in the constituents including the interface. The proposed framework here is generic545

and versatile, and thus, it can readily recover perfect, cohesive and elastic interface models. Throughout a546

series of numerical examples, we have shown that our proposed analytical solutions are in excellent agreement547

with the computational results obtained from the finite element method. Furthermore, the notions of size-548

dependent bounds and ultimate bounds were introduced which give a crucial insight into the problem from a549

computational material design perspective. We believe this contribution provides a deeper understanding of the550
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interface effects and size-dependent behavior of continua with a variety of applications in nano-composites.551

Our next immediate plan is to extend the current work to 3D and study the size effects in particulate composites552

due to interfaces.553

554

Appendix A: System of equations for the estimate and bounds on the shear modulus555

In this section, we elaborate on the system of equations used to obtain the estimate and the bounds on the556

macroscopic shear modulus explained in Sect. 3.557

Appendix A.1: Effective shear modulus558

For this problem, the displacement fields in the matrix, fiber and the effective medium are given in Eq. (27)559

resulting in ten unknowns �
(1)
1 , �

(1)
2 , �

(1)
3 , �

(1)
4 , �

(2)
1 , �

(2)
2 , �

(2)
3 , �

(2)
4 , �

(eff)
3 and �

(eff)
4 . We concluded that560

since the displacement at the center of the RVE must be finite, �(1)
3 and �

(1)
4 must vanish. Applying the energetic561

criterion expressed in Eq. (30) yields �
(eff)
4 . The remaining seven unknowns are determined using the below562

system which is deduced from Eq. (29)563

Q

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�
(1)
1

�
(1)
2

�
(2)
1

�
(2)
2

�
(2)
3

�
(2)
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

1

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

−
3

2
3

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
(eff)
3 , (A.1)564

with565

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3µζ2r1

ζ3

µ

r1
− 2µ1

3µζ5r1

ζ6

µ

r1
+ 2µ2

3µ

r5
1

+
6µ2

r4
1

−
4ζ4

r2
1

−
λ2µ

µ2r3
1

−
6[µζ2 + µ1ζ1r1]r1

ζ3
−

2µ

r1
− 2µ1 −

6[µζ5 − µ2ζ4r1]r1

ζ6
−

2µ

r1
+ 2µ2 −

6µ

r5
1

−
6µ2

r4
1

2ζ4

r2
1

+
2µλ2

µ2r3
1

λ1r3
1

ζ3

µ1

k
+ r1 −

λ2r3
1

ζ6

µ2

k
− r1

3µ2

kr4
1

+
1

r3
1

−
2ζ4

kr2
1

−
ζ5

µ2r1

3µ1ζ1r2
1

kζ3
+ r3

1
µ1

k
+ r1

3µ2ζ4r2
1

kζ6
− r3

1
µ2

k
− r1 −

3µ2

kr4
1

−
1

r3
1

ζ4

kr2
1

−
1

r1

0 0 0 2µ2
6µ2

r4
2

−
4ζ4

r2
2

0 0
6µ2ζ4r2

2

ζ6
2µ2 −

6µ2

r4
2

2ζ4

r2
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A.2)566

where567
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ζ1 = λ1 + µ1 , ζ2 = λ1 + 2µ1 , ζ3 = 2λ1 + 3µ1 , ζ4 = λ2 + µ2 , ζ5 = λ2 + 2µ2 , ζ6 = 2λ2 + 3µ2 .568

Note the above system of equations is nonlinear, and thus, special treatments must be applied. We express the569

solution of the above system in the form570

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�
(1)
1

�
(1)
2

�
(2)
1

�
(2)
2

�
(2)
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�
(2)
4

⎤
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=
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g1
g2
a1
a2
a3
a4

⎤
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+

⎡
⎢⎢⎢⎢⎢⎣

h1
h2
b1
b2
b3
b4

⎤
⎥⎥⎥⎥⎥⎦

�
(eff)
3 . (A.3)571

The last two equations in Eq. (29) can be written as572

a5 + b5�
(eff)
3 =

c5 + c6�
(eff)
3

Mµ
, a6 + b6�

(eff)
3 =

c5 − c6�
(eff)
3

Mµ
. (A.4)573

with574

a5 =
λ2r3

2

2λ2 + 3µ2
a1 + r2a2 −

1

r3
2

a3 +
λ2 + 2µ2

µ2r2
a4 ,

a6 = r3
2 a1 + r2a2 +

1

r3
2

a3 +
1

r2
a4 ,

b5 =
λ2r3

2

2λ2 + 3µ2
b1 + r2b2 −

1

r3
2

b3 +
λ2 + 2µ2

µ2r2
b4 ,

b6 = r3
2 b1 + r2b2 +

1

r3
2

b3 +
1

r2
b4 ,

c5 =
r2

2
,

c6 =
r2

4
.

(A.5)575

Subtracting (A.4)1 from (A.4)2 gives576

�
(eff)
3 =

[a5 − a6]
Mµ

2c6 + [b6 − b5]Mµ
.577

Substituting the final result in (A.4)1, after some algebra we obtain the below quadratic equation578

[a6b5 − a5b6]
Mµ2 − [b5c5 − b6c5 + a5c6 + a6c6]

Mµ + 2c5c6 = 0 .579

From the two possible solutions, the positive value is the macroscopic shear modulus.580

Appendix A.2: Strain bound on the shear modulus581

For this problem, the displacement fields in the matrix, fiber and the effective medium are given in Eq. (32)582

resulting in ten unknowns �
(1)
1 , �

(1)
2 , �

(1)
3 , �

(1)
4 , �

(2)
1 , �

(2)
2 , �

(2)
3 and �

(2)
4 . We concluded that since the
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displacement at the center of the RVE must be finite, �
(1)
3 and �

(1)
4 must vanish. The remaining six unknowns583

are determined using the below system which is deduced from Eq. (33)584

⎡
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where587

ζ1 = λ1 + µ1 , ζ2 = λ1 + 2µ1 , ζ3 = 2λ1 + 3µ1 , ζ4 = λ2 + µ2 , ζ5 = λ2 + 2µ2 , ζ6 = 2λ2 + 3µ2 .588

Appendix A.3: Stress bound on the shear modulus589

For this problem, the displacement fields in the matrix, fiber and the effective medium are given in Eq. (32)590

resulting in ten unknowns �
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are determined using the below system which is deduced from Eq. (37)593
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ζ1 = λ1 + µ1 , ζ2 = λ1 + 2µ1 , ζ3 = 2λ1 + 3µ1 , ζ4 = λ2 + µ2 , ζ5 = λ2 + 2µ2 , ζ6 = 2λ2 + 3µ2 .597
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