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a b s t r a c t

Phenomena governing the grinding process are largely related to the nature and evolution of contact
between grinding wheel and ground component. The definition of the contact area plays an essential role
in the simulation of grinding temperatures, forces or wear. This paper presents a numerical model that
simulates the contact between grinding wheel and workpiece in surface grinding. The model reproduces
the granular structure of the grinding wheel by means of the discrete element method. The surface
topography is applied on the model surface taking into account the dressing mechanisms and move-
ments of a single-point dresser. The individual contacts between abrasive grits and workpiece are stu-
died regarding the uncut chip thickness, assuming viscoplastic material behaviour. Simulation results are
evaluated with experimental measurements of the contact length. The results remark the importance of
surface topography and dressing conditions on the contact area, as well as wheel deflection.

1. Introduction

Technological progress must be based on a deeper scientific
knowledge of the process. In this context, research work focused
on the modelling and simulation of the grinding process is cur-
rently very active. The analysis of the contact between the grind-
ing wheel and the workpiece started in the early 1970s, faced by
empirical and semi-analytical approaches. The main authorities in
grinding remark the need to consider the contact region in the
grinding operation [1,2]. Aspects such as material removal and
heat generation take place in the contact region. The granular
structure of the grinding wheel and the complex surface topo-
graphy make difficult to model the operation.

The ideal contact model would be the one that reproduces the
structure and stiffness of the wheel, combined with an accurate
topography description. This work presents a numerical model of
the grinding wheel structure by means of the discrete element
method (DEM). Surface topography is applied according to the
dressing mechanisms and kinematics of the single-point dresser.
The model is used to simulate the contact in surface grinding. The
penetration is the reference to estimate the cutting force on each
grit. The workpiece material behaviour is assumed viscoplastic,
and the effect of the centrifugal force is also taken into account.
The aim is to define numerically the contact area and wheel

deformation with a complete model that provides a general
overview of the grinding operation.

2. Literature review

The literature review collects the main contributions on
grinding wheel structure models, surface topography models and
contact length models.

2.1. Wheel structure models

The performance of a grinding wheel depends significantly on
its structure and morphology. So far, models with noticeable
simplifications have been proposed, as [3], which describe wheel
elasticity with uniformly distributed spherical grains bonded by
elastic springs. Their regular configuration does not match the real
random distribution of grains and bonds, creating anisotropic
bodies.

Numerical tools like the finite element method (FEM) simulate
the mechanical behaviour of a heterogeneous body in an extensive
domain. Its main drawback is that it would be very difficult to
mesh properly the porous structure of the wheel. In addition, the
adjustment of the constitutive relationships of the material and
contact conditions would be demanding. The use of multi-scale
modelling would decrease the size of the model [4]. To the best of
the knowledge of the authors, no finite element model of the
wheel structure has been published at the time of sending this

http://dx.doi.org/10.1016/j.ijmachtools.2016.07.004 
0890-6955/

n Corresponding author.
E-mail address: j.osa@ehu.eus (J.L. Osa).

www.sciencedirect.com/science/journal/08906955
www.elsevier.com/locate/ijmactool
http://dx.doi.org/10.1016/j.ijmachtools.2016.07.004
http://dx.doi.org/10.1016/j.ijmachtools.2016.07.004
http://dx.doi.org/10.1016/j.ijmachtools.2016.07.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmachtools.2016.07.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmachtools.2016.07.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmachtools.2016.07.004&domain=pdf
mailto:j.osa@ehu.eus
http://dx.doi.org/10.1016/j.ijmachtools.2016.07.004
http://dx.doi.org/10.1016/j.ijmachtools.2016.07.004


paper.
Li et al. [5,6] propose the first DEM model of the grinding

wheel. The model studies the stiffness and resistance of the
grinding wheel, the force chain in the bonding material and pre-
dicts the surface roughness of the workpiece as a kinematic model.
Octahedron discrete elements (DE) substitute SiC abrasive grains.
The model is created shaking uniformly distributed elements in
position and orientation, like [7,8]. In order to reproduce bonding
bridges geometrically and the binder volume fraction, several
elastic beams play the role of a single bonding bridge, creating a
complex redundant network. In this way, there are several binder
spherical DE between the octahedron abrasive DE. Regarding the
elements that connects, there are abrasive–binder beams and
binder–binder beams. Beam radius is set arbitrarily regarding a
fraction of element diameter plus a normal dispersion component.
The calibration of beam properties is made by numerical and ex-
perimental compression tests, matching the fracture of beams and
the noise during tests. In this way, a beam is created if the distance
between two intermediate DEs is below a threshold value. How-
ever, the resistance under compression is highly dependent on
strain rate, which enlarges remarkably the resistance of the con-
glomerate abrasive–binder at high cutting speeds. The stiffness (or
elasticity) is adjusted regarding the load–time slopes in the ex-
perimental compression tests. Time is representative of the re-
sistance but not of the stiffness, which is related to the deforma-
tion. The model is used to analyse the force chains in the re-
dundant bonding network. The results remark the role of the
stresses in tangential direction.

The kinematic model simulates the workpiece roughness, but

disregards the effect of dressing. That is the reason for the differ-
ences between measurements and numerical surfaces. The octa-
hedron DEs form directly the wheel surface, while the geometry of
inner DEs do not play a remarkable role in the structure. The
cutting force that acts on each grain is estimated analysing the
peaks of experimental force measurements. In this way, the re-
lative position of the surface grit regarding the workpiece (or chip
thickness) is neglected, as well as the effect of overlapped peaks.
The workpiece is modelled by a rectangular prism composed of
DEs. The relationship between workpiece elements is not ex-
plained. The authors claim that the model reproduces the material
ploughing during grinding, but they do not clarify if the material is
removed.

2.2. Surface topography models

Doman et al. [9] review the main topography models presented
in the literature. 1D models characterise the surface topography by
a single parameter as the grain density, while 2D and 3D models
complete the geometrical description of the wheel surface.

The surface topography created by dressing has a direct impact
on the performance. Grain and bond fracture are the main dres-
sing mechanisms [2]. The single-point dresser emulates turning
movements, levelling out the surface and creating a subtle helix
pattern perceptible on the ground surface [7]. Dressing conditions
modify the aggressiveness of dressing mechanisms, creating an
open softer or a close stiffer wheel surface.

Chen and Rowe [7] create a numerical surface that includes the
effect of dressing, using a continuous sinusoidal random function

Nomenclature

Ad area of intersection of the diamond and the grain
(mm2)

a a, e set and effective depth of cut (μm)
ad dressing depth of cut (μm)
b b b, ,d s w width of the dresser, grinding wheel and workpiece

(mm)
c dumping coefficient
db average grit dimension removed by bond fracture

(μm)
dDE, dg average discrete element and grain diameter (mm)
ds grinding wheel diameter (mm)

μE E,s grinding wheel and beam Young modulus (GPa)
′* ′*F F,n t specific normal and tangential force (N/mm)

f f,c d contact and dumping force on a single-grit (N)
f f,n t normal and tangential force on a single-grit (N)
fce centrifugal force on a single-grit (N)
fd dressing feed (mm/rev)

*G G,dyn o dynamic and theoretical grain density ( )grains/mm2

hcu uncut chip thickness (μm)
hf grit fracture amplitude (μm)
h h,s w grinding wheel and workpiece height on the DEM

model (mm)
*km machine-wheel-workpiece stiffness (N/μm)

*lc contact length (mm)
lg geometrical contact length (mm)

*L average distance between surface grits (mm)
M mesh size
Miw equivalent mass of i element and w workpiece (kg)
NDE number of discrete elements

*Np number of peaks in the APS signal
Nc number of discrete elements in contact with the

workpiece
Ns rotation speed of the grinding wheel (rpm)
r discrete element diameter reduction factor

μr diameter ratio of the beams
rp distance between the peak and the discrete element

centre (μm)
S structure number
s thickness of the mica sheet (μm)
sn random number between 0 and 1
*tc contact time (s)
T temperature (K)
ud dressing overlap
vg volume of an abrasive grit ( )mm3

VDE volume of the model domain ( )mm3

Vg volume fraction of abrasive in the grinding wheel
vs cutting speed (m/s)
vw work speed (m/s)
v v,i w speed of a discrete element and the workpiece (m/s)
x, y, z position coordinates (m)
yp grit peak depth (μm)
δi penetration of an individual grit on the workpiece

(μm)
ε ε ε̇ ̇, ,p p o plastic strain, plastic strain rate and reference strain

rate
μ* force ratio
μg grit diameter variation range (mm)
ν νμ,s Poisson ratio of the grinding wheel and beams
θ semi-angle of the segment of the grinding wheel DEM

model
ρ*
d single-point dresser radius (mm)

ρ*
s cutting edge sharpness or peak radius (μm)

sy effective yield stress (MPa)



cuts the grit that interferes. This function yp has two components:
the uniform helix of the diamond ( ( ))f x and a random component
that reflects the fragile fracture of grits (Eq. (1)). hf is the amplitude
of the fracture term, ω the random frequency and α the random
initial angle. The amplitude hf of the fragile fracture component yf
is proportional to diamond–grain intersection area Ad and the
dressing overlap ratio ud, and inversely proportional to the dres-
sing feed fd (Eq. (2)). The effect of the inclination of the diamond
tip is disregarded:

ω α= + = ( ) + [ ( + ) + ] ( )y y y f x h xsin 1 1p d f f
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Chen and Rowe [7] take into account the bond breakage, re-
garding the dressing force and the remaining grain size. However,
this procedure is not related to the topography. Malkin and Cook
[10] deduce the fraction of grains removed by bond fracture,
analysing the size distribution of abrasive particles collected dur-
ing dressing. Eq. (3) relates the surface grain density Gdyn and the
theoretical grain density Go regarding the average dressing particle
dimension removed by bond fracture db. Go is estimated assuming
that a plane cuts the body of the wheel with Eq. (4), where Vg is
volumetric abrasive fraction and dg the average grain diameter. db
is related to the fraction of abrasive in weight removed by bond
fracture and it is defined measuring Gdyn:
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Grain protrusion height has been treated as Gaussian, Weibull
and random variable. Simple shapes are chosen to describe as-
perity geometry. Cutting edges are assumed spherical, conical or
frustum, pyramidal and ellipsoidal in shape. Peak geometry re-
flects the sharpness, which is defined by the cutting edge radius ρs

(sphere) and slope (cone, frustum, and pyramid). Both are mea-
sured analysing 2D profiles of wheel surfaces.

Topography models are rigid, except [7,11], that use springs on
surface elements. Thus, they model the surface stiffness, but not

the actual body stiffness.

2.3. Contact models

The apparent contact area between wheel and workpiece in
surface grinding is determined by the width of pass bs and the
contact length lc. As bs is constant, the contact area is characterised
by lc. Supposing that wheel and workpiece are smooth and rigid,
the geometrical contact length lg is defined with Eq. (5) [2], where
ds is the wheel diameter and ae the depth of cut:

= · ( )l d a 5g s e

However, experimental measurements show that lc is 1.5–3
times larger than lg [2]. The problem of estimation of lc has been
tackled from empirical [12,13] and semi-analytical approaches
based on Hertz mechanics [14–18] in macro- and micro-scale as-
suming elastic contact. Lindsay [19] develops a spring model that
disregards the depth of cut.

Some characteristics are shared on these models: the topo-
graphy [14,17,18], the depth of cut [12,14–18], the normal force
[14–19] and the elasticity of the grinding wheel and workpiece
[14–19]. Only [18] assumes elastoplastic contact, and none con-
siders the effect of the strain-rate, temperature nor cutting. Factors
not taken into account are packed into empirical coefficients in all
models.

3. Contact length DEM model

The review highlights the importance of surface topography
and elasticity of wheel and workpiece in the contact analysis of
grinding. But the actual grit–workpiece interaction has been lar-
gely disregarded, assuming elastic contact and neglecting the
tangential force. A complete contact model combines the stiffness
of the bodies, the surface topography and the individual interac-
tion between asperities.

This section describes the construction of the DEM model of
the grinding wheel, as well as grit–workpiece contact detection
and contact law. The contact DEM model is developed with the
GranOO Cþþ library created at the I2M, ENSAM of Bordeaux.
Grinding wheel morphology and structure can be adequately re-
produced by DEM, reflecting the randomness of grain size and

Fig. 1. Flow-chart of the grinding process and analogy of the numerical simulation of grinding.



position, as well as the elasticity of the wheel. The proposed DEM
model represents abrasive grits by spherical discrete elements,
while cohesion between grits is brought by elastic beams. A single
rectangular discrete element models the workpiece.

The model follows and improves the framework for a general
3D topography model defined by Doman [9], providing elasticity
to wheel body. Fig. 1 presents the flow-chart of the grinding pro-
cess and the numerical contact model in parallel. First, an un-
dressed grinding wheel DEM model is created according to wheel
designation and dimensions. Elastic properties are applied
through calibration. Then, the dressing generates the surface to-
pography. Contact conditions between individual grits and the
workpiece are defined by the contact law.

3.1. Grinding wheel DEM model

The starting point of the DEM model is the grinding wheel
designation and dimensions. Grinding wheels are defined ac-
cording to abrasive material, grain size, hardness grade, structure
and bond type. The input parameters to build the DEM model are
the average grain diameter dg, structure and hardness grade.

Grinding wheels are formed of a mix of three or four adjacent
grain sizes to control grain density and hardness of the wheel. Grit
size is defined by sieve number M and the average grain diameter
dg can be estimated with Eq. (6) [20]. Koshy et al. [8] considers that
the grain size follows the normal distribution, hypothesis followed
by later authors. However, the grain size distribution seems closer
to a uniform distribution in [10], which has been chosen for the
DEM model. Eq. (7) defines the range μg, being dg

1 and dg
2 the

biggest and smallest grain diameter of the mix regarding meshes
used. Eq. (8) estimates the volumetric fraction of abrasive Vg ac-
cording to the structure number S [20]:
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The chosen procedure to construct the DEM model is known as
numerical sintering [21], which ensures randomness, homo-
geneity and isotropy. To reduce the size of the model and the
computational cost, just a thin slice of the wheel–workpiece set is
modelled (Fig. 2). Contact stresses and deformations are con-
centrated in the contact area. So the model is cut at the height hs,
without altering the contact conditions. hs is defined by FEM, as
the height above which the stress is less than a hundredth of the
maximum stress (Fig. 3).

Both, the abrasive volumetric fraction Vg and the average grain

diameter dg, must be adjusted at the same time. First, the number
of DE required NDE is estimated with Eq. (9) regarding the volume
of the model domain VDE, Vg and vg grit volume (Eq. (10)), where
ds, bs and hs are the wheel diameter, width and height, respec-
tively, and θ is the semi-angle of the arc of the DEM model. The
average DE diameter dDE obtained in the DEM model is bigger than
the desired dg, so the diameter of all DE is reduced by the reduc-
tion factor r (Eq. (11)). In this way, the DEM model matches Vg and
dg at the same time:

πθ θ
π

= = −
( )

⎡
⎣
⎢
⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
⎤
⎦
⎥
⎥

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟N V V

v
d b

V
d

1
4 360

sin
2

6

9
DE DE g

g

s s
g

g

2

3

θ = −
( )

⎛
⎝⎜

⎞
⎠⎟

h
d

2arccos 1
10

s

s

= ( )r d d/ 11g DE

3.2. Connecting beams and calibration of mechanical properties

Bernoulli cylindrical beams play the role of bonding bridges,
providing stiffness to the DEM model (Fig. 2). Elastic beams are
defined by two geometrical parameters (diameter and length

μL , Fig. 4a) and two mechanical properties (Young's modulus μE and
Poisson's ratio νμ). The diameter of the beam is given by a fraction

μr of the average diameter of both the DE that connects, so it is
straightforwardly defined by μr . μL is defined by the distance be-
tween the centres of the elements that connect the beam. Beam
length and orientation variations are updated every iteration. The
position of DE centres regarding the initial position sets the in-
teraction forces between grains: axial force, torque and bending
moment (Fig. 4b). The formulation of beams is described in [21].
Beams are massless since mass properties are assigned only to DE.
Unlike Li et al. [5,6], the volume fraction of binder does not match
necessarily the beams volume, because their role is to provide
stiffness to the model, not to represent realistically the geometry
of bonding bridges.

The hardness grade letter indicates the strength that the bond
holds a grit, but it is widely accepted to use wheel's Young's
modulus Es to determine wheel hardness [20]. Es is measured by
sonic testing. A light mechanical impulse incites an initial de-
formation, which produces a transient mechanical vibration. An
analysis in the time domain of the vibration leads the natural
frequency of the dominant mode. The frequency of this vibration
depends on the mass, the shape and the stiffness of the wheel, and
it is used to determine Es and Poisson's ratio νs. Advantages of the
sonic test are that it is a non-destructive test and simple toFig. 2. Contact DEM model (out of scale).

Fig. 3. Stress distribution analysis in the contact zone for the definition of the
model height hs.



perform.
Unlike FEM, continuous mechanical behaviour laws cannot be

directly introduced into DEM formulation. Material properties, as
Es and νs, are emergent properties at the macroscopic scale in the
DEM model. The micro-scale mechanical properties are calibrated
carrying out several tensile numerical tests on cylindrical speci-
mens, following the procedure set by André et al. [21]. There are
three micro-scale parameters to calibrate (νμ, μr , and μE ) regarding
the macro-scale properties (Es and νs). Six model sizes are used in
the calibration (500, 1000, 2000, 5000, 10 000 and 20 000 DE) and
four models per size. The reason is that using the same input
parameters in the DEM model construction, the DEM models are
different due to the randomness of the creation procedure. So the
result of each model size is the average of four simulations. Nu-
merical tensile tests measure the axial and transversal strain of the
specimens, which allows the definition of the macro-scale prop-
erties. Analysing the results graphically, the micro-scale properties

are fitted regarding the macro-scale properties.
Fig. 5 shows the flow chart of the calibration of beam proper-

ties. The micro-scale νμ, μr and μE parameters affect in a different
way to the macro-scale properties. For any specimen size, νμ has
scarce influence on macro-scale properties. With that in mind, the
calibration is performed in two steps. First, νμ is set as νs, sparing a
variable. Maintaining μE fixed, the influence of μr on νs is studied.
Once μr is set, the second step is to analyse the influence of μE on Es.
In that way, the three micro-scale variables are set and these are
independent to the model size, DE size or abrasive fraction. The
mechanical properties are applied after creating the DEM model
and before run the simulation.

3.3. Topography of grinding wheel surface

The topography is applied on the DEM model in four steps:
(1) levelling out the surface, (2) remove the fraction of grains re-
leased by bond fracture, (3) set the peak radial depth and (4) the
average cutting edge radius (Fig. 6).

The diamond breaks up the abrasive grits that intercepts in a
brittle manner. This effect is modelled cutting off the DEM model
surface at the grinding wheel diameter ds. Therefore, DEM model
is constructed with a diameter slightly larger than ds, avoiding the
effect of grain pile up at the surface at the same time. Then, the
fraction of grains pulled out by bond fracture is removed regarding
Malkin's model [10]. The average dressing particle dimension re-
moved by bond fracture db is estimated with Eq. (3) regarding
experimental grain density measurements Gdyn. In this way, the

Fig. 4. Elastic beam (a) relaxed and (b) loaded [21,22].

Fig. 5. Flow chart of calibration procedure of the micro-scale properties of the
beams [21].

Fig. 6. Grit fractured during dressing and definition of the cutting edge sharpness
radius ρs (adapted from [2]).

Fig. 7. Implementation of dressing on the DEM model surface; the peak is located
at the radial depth yp regarding the wheel diameter ds and aligned with the DE
centre; yp is the sum of the ductile cutting of the dresser yd and abrasive fracture
term yf (adapted from [7]).



intercepted elements by the cylindrical surface ds with a diameter
smaller than db are removed from the model surface.

Now the DEM model surface is ready to be treated. First, the
peak position in radial depth yp is defined for each surface DE.
Regarding [23], each surface grit has a single useful cutting edge or
peak (Fig. 6). In the DEM model, the peak radial depth yp is defined
applying Chen's sinusoidal function on DE centres as a discrete
function (Fig. 7). Chen's topography model is chosen, even though
the simple definition of the fracture term, which is dominant,
because the combination of the dresser helix and fracture term
creates an acceptable topography to model the contact. Eq. (12)
reminds Eq. (1), combining the effect of helix ductile cut yd and
abrasive fracture yf. The intersection of the vertical line that
crosses the DE centre and circumference function with a moving
centre placed in multiple of the dressing feed fd defines yd (Eq.
(13)). In Eq. (13), ρd is the radius of the single-point dresser, xc and
yc are the instantaneous dresser position, x is the axial position of
the peak or DE centre and ad is the dressing depth of cut. xc is a
discrete number proportional to the feed fd and its value is defined
rounding the nearest value to DE centre x. And Eq. (14) defines yf
as a random fraction sn of the fracture term amplitude hf, defined
by Chen in Eq. (2). In this way, the grain peak resembles the most
protuberant cutting edge (Fig. 6) and the grain density arises ac-
cording to radial depth yp:

( ) = ( ) + ( )y x y x y 12p d f

ρ
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Regarding peak geometry, the cutting edge sharpness is

modelled with the sharpness radius ρs. It offers a variable slope
and bearing surface through depth, as well as it can indicate the
wear condition. The cutting edge radius ρs is measured analysing
two 2D profiles of grain peaks on the cutting direction [24]. As
grit–workpiece contact is superficial, ρs is defined as the circle
inscribed within a few microns depth.

3.4. Boundary conditions

In order to simulate the contact, grinding forces are applied on
the workpiece, whereas the cutting plane of the DEM model is
fixed and the centrifugal force is applied on each element (Fig. 2).
The simulation starts from a non-contact almost-touching position
( < )−10 m16 to optimise the computation time. First, the normal
force is applied first as a ramp to assure the dynamic stability,
becoming constant when the nominal normal force is reached. The
experimentally measured normal and tangential forces are applied
on the workpiece. The positions of surface elements and the
workpiece are compared on each iteration according to the depth
of cut ae, applying a reaction force if an interpenetration is de-
tected. During simulation, the actual maximum penetration, re-
sultant contact force and contact length are monitored. The si-
mulation finishes when the damped system gets balanced, that is,
the applied force on the workpiece equals the resultant of grit
reactions.

3.4.1. Contact detection
Studying Fig. 8, the geometric contact length lg is defined by the

arc A–B and the starting point A coincides with the bottom
quadrant of the wheel. Due to wheel deformation, the contact area
enlarges to A' point. The model supposes that, on the A'–A quad-
rant, the grains plough plastically the workpiece surface and, on
the A–B quadrant, the analytical uncut chip thickness hcu is added
to the plastic deformation reached in A'–A. On both sides, the

Fig. 8. Contact detection on A'–A and A–B segments, the circles represent grain peaks. Peak depth yp
i is defined regarding the wheel diameter ds and δi is the penetration

regarding the workpiece surface. The corresponding uncut chip thickness hicu is added in the A–B segment.

Fig. 9. Contact detection at the A'–A segment between a surface DE and workpiece: peak position is compared with workpiece position to determine the penetration δi.



penetration of the grits δi coincides with the actual hcu, which is
used to estimate the force on each grit. The effect of the tracks left
by previous grits is disregarded, as well as the material pile up.

The contact detection algorithm differs on both sides. Regard-
ing Fig. 8, on the A'–A segment a contact is detected if the inter-
penetration grit–workpiece δi is positive when comparing their
positions at each iteration (Fig. 9). Eq. (15) introduces the contact
detection expression. The penetration δi is the difference between
the grit peak ( + )y ri p

i and workpiece surface ( − )y h /2w w positions.
rp

i is the distance between peak and DE centre, ( )x y z, ,i i i and
( )x y z, ,w w w are DE centre and workpiece position coordinates, re-
spectively, and hw is the workpiece height. The distance rp

i is de-
fined before simulation, regarding the DE initial position, ds the
wheel diameter and yp

i the peak radial depth.

δ = ( + ) − −
( )

⎛
⎝⎜

⎞
⎠⎟y r y

h
2 15i i p

i
w

w

On the A–B segment, the elements that take part are the ones
placed on a distance of the depth of cut ae from the workpiece DE
surface. Due to the real curvature of the contact zone is unknown,
the indentation on the A–B segment takes the peak depth yp as
floating reference (Eq. (16)). Thus, the penetration δk is the sum of
the maximum indentation on the A'–A side δMAX plus the corre-
spondent uncut chip thickness hcu

k, taking into account peak
height differences yp (Fig. 8). A positive δk within ae distance from
the workpiece surface confirms the contact. Supposing that hcu
varies lineally through the contact arc, its value is estimated re-
garding the maximum uncut chip thickness hcuMAX and the ele-
ment longitudinal relative position zk regarding the maximum
horizontal contact detected zMAX (Eq. (17)). Eq. (18) estimates
hcuMAX [2], where L is the average distance between grits, vw and vs

are the working and cutting speeds, ae is the depth of cut and ds is
wheel diameter:
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Table 1
Test conditions, instruments, experimental results and simulation input data

Grinding wheels
300x76.2x30 mm A46I8V A60K7V
Abrasive volume fraction, Vg (%) 48 50
Average grain diameter, dg (mm) 0.330 0.253
Young's modulus, Es (GPa) 32 43

Poisson ratio, νs 0.2 0.2

Density (kg/m3) 1854 2096
Model dimensions, dsxbsxhs (mm) 300x2.24x5.1 300x1.7x5.1
Number of DEs, NDE 11 000 19 100

Dressing conditions
Coarse (C) ad ¼ 20 μm fd ¼ 0.8 mm/rev ud ¼ 1

Medium (M) ad ¼ 20 μm fd ¼ 0.4 mm/rev ud ¼ 2

Fine (F) ad ¼ 20 μm fd ¼ 0.2 mm/rev ud ¼ 4

Needle type single point dresser bd ¼ 0.8 mm ρd ¼ 4.06 mm

Force measurements
Dynamometer plate: Kistler 9257B 500 Hz, force range 71000N
Four runs per test condition a ¼ 10 - 20 μm vs ¼ 24 m/s vw ¼ 0.5 m/s

Topography Confocal microscope Leica DCM3D

Grain density and contact length
Applied power source (APS) Oscilloscope Lecroy waveRunner 104Xi
12 runs per test condition Mica sheet thickness 40 μm

A46I8V A60K7V

F M C F M C

db (μm) 233 243 259 178 188 199

hcuMAX (a ¼ 10 μm) 0.34 0.39 0.51 0.31 0.34 0.4

hcuMAX (a ¼ 20 μm) 0.52 0.58 0.7 0.48 0.48 0.54

Fig. 10. Analogy of the hardness model of chip formation [1].



3.4.2. Contact law
The contact force is used along with neighbour DE interactions

to calculate the speed and position of the elements in the fol-
lowing iteration.

Shaw [1] proposes the analogy of the hardness model to explain
the chip formation in grinding. The maximum shear stress slip-lines
in grinding resemble the ones produced testing material hardness
(Fig. 10). As hardness model, Shaw deduces the reaction as plastic-
perfect rigid contact. However, plastic strain and the high strain-rate
increase material resistance, while high temperatures weaken the
material. The viscoplastic behaviour describes the inelastic behaviour
of materials regarding the strain-rate and temperature. The Johnson–
Cook (JC) model is used to estimate the effective yield stress sy [25].
The penetration δi of the grit in the workpiece (or chip thickness hcu)
is the main input of the hardness model.

Once detected the contact, the same and opposite normal f n
i

and tangential f t
i contact forces are added to the element and the

workpiece f n
i and f t

i are related by the experimentally measured
force ratio μ (Eq. (19)). The normal reaction force on a grit f n

i (Eq.
(20)) has a contact reaction term fc deduced with Shaw's model
(Eq. (21)) and a dumping term fd (Eq. (22)):
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fc and fd are aligned with n, the vertical unit vector. Even DE are
spheres of dg average grain diameter, a sphere of ρs radius re-
presents the cutting edge sharpness. The dumping term fd is re-
lated to the penetration speed. In Eq. (22) c is the dumping coef-
ficient, Es Young's modulus of the wheel, = ·

+Miw
m m

m m
i w

i w
the

equivalent mass of DE and workpiece couple, and vi, vw the speeds
of the element and the workpiece. The dumping coefficient c does
not affect on simulation results, but dissipates energy from both
bodies. So a high c is chosen to accelerate the convergence.

3.4.3. Centrifugal force
The centrifugal force fce is applied on each DE, regarding the

mass of the DE mi, rotation speed of the wheel Ns and distance
from wheel centre, which is calculated with yi and zi position co-
ordinates. fce is applied on the radial direction and Eq. (23) defines
the value of the module fce

i :

π
= · +
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4. Validation of the DEM contact model

Several tests and correspondent simulations have been performed
in order to validate the contact model. Experimental tests supply the
input data for the simulations as well as the aimed contact length. On
the one hand, input data is provided by force measurements (forces
and depth of cut), topography measurements (sharpness radius and
average distance between grits) and the applied power source (APS)
(grain density). On the other hand, the APS also measures the contact
length, the output of the contact model.

Before running the simulations, the mechanical properties of
the beams are calibrated according to wheel grade. To overcome
the randomness of the DEM models, four models are created with
the same parameters for each grinding wheel type. In the pre-
processing, their surface is modified to reproduce the topography
and the experimental forces and constraints are applied on the

Fig. 11. Experimental set-up of the applied power source method.

Fig. 12. Correspondence between the wheel grade (G–T), the elastic modulus Es
and the micro-scale beam's elastic modulus μE .

Table 2
Micro-scale beam properties.

Grinding
wheel

Micro-scale
Poisson ratio, νμ

Micro-scale
diameter ratio, μr

Micro-scale
modulus, μE (GPa)

A46I8V 0.2 0.538 175
A60K7V 0.2 0.538 234



Fig. 13. Experimental and numerical bearing ratio curves of DEM model surfaces regarding grinding wheel (A46I8V, A60K7V) and dressing condition (F, M, and C).

Fig. 14. Contact length experimental measurements and numerical results, according to the grinding wheel type (A46I8V on the left and A60K7V on the right) and dressing
condition (C, M, and F).



model. In the processing, the new position of each DE is calculated
on each iteration. Finally, the monitored data are analysed and the
grinding contact length is estimated as the average of the four
simulations per testing condition.

4.1. Test conditions and experimental results

Table 1 compiles the measuring instruments and testing con-
ditions. Two vitrified alumina grinding wheels (A46I8V and
A60K7V) have been tested under three dressing conditions (fine
(F), medium (M) and coarse (C)) and two set depth of cut a (10–
20 μm). All measurements have been performed without coolant
in the surface grinder GER SC 60/40.

Experimental grinding forces are directly introduced in the
model as input. During simulation the force is the reference value
of the solution, as the resultant of individual grit reaction forces
converges with the force. The effective depth of cut ae is estimated
regarding the machine–tool–workpiece system stiffness km (Eq.
(24)) [2]:

= −
′

( )
a a

F
k 24e

n

m

The single-point dresser is a needle like synthetic diamond. It
has the advantage that maintains the profile through the working
life. Its profile is almost flat of radius ρd¼4.06 mm, two orders
bigger than the dressing depth of cut.

2D profiles have been analysed in the cutting direction to de-
fine the sharpness radius of the cutting edge ρs. 3D topography
measurements allow us to identify the most protuberant peaks for
2D profiles. Just the end of the peak removes material in a shallow
manner, so the circle of the edge fits the first 5 μm. Similar ρs

values have been observed for different dressing conditions. An
average ρs of 29 μm and 27 μm are observed on A46I8V and
A60K7V, respectively, with a standard deviation of 4.6 μm and
3.8 μm. The same profiles have been used to measure the average
distance between grits L regarding [23].

Due to its accuracy, the APS method [26] has been chosen to
measure the contact length lc, as well as the dynamic grain density
Gdyn. The APS follows the principle of an open and close circuit
(Fig. 11). The workpiece is divided in two parts isolated by a mica
sheet and both are connected to an electric potential source of
10 V. When a grit passes over the protuberance, the circuit
switches on and a voltage is measured by the oscilloscope. The
study of the tension signal over time leads the estimation of the

contact time tc. Thus lc is defined with Eq. (25), where vw is the
work speed and s the thickness of the insulation layer. In the same
way, Gdyn is defined as the amount of tension peaks (or contacts)
Np over the contact area, lc by protuberance width b (Eq. (26)).
Tests are performed under three set depths of cut a¼5–10–20 μm,
two protuberance widths b¼0.15–0.5 mm and 12 runs per test
condition:

= · + ( )l v t s 25c w c

=
· ( )

G
N

l b 26dyn
p

c

4.2. DEM model set-up

Before running the simulation, beam properties are calibrated
to match the elasticity of the wheel and surface topography is
applied. The calibration has been made for the whole range of
wheel grades (G–T). Calibration results are valid for any grit size
and structure number. Several cylindrical DEM specimens of dif-
ferent sizes are prepared for the tensile numerical tests. Setting
the micro-scale Poisson ratio at ν =μ 0.2, a diameter ratio of

=μr 0.538 is obtained for a macro-scale νs of 0.2 [20]. The second
step of the calibration leads a regression curve (Fig. 12) that relates
the macro- and micro-scale Young modulus ( )μE E,s for the whole
range of hardness grades. Table 2 introduces the micro-scale
parameters obtained in the calibration.

The topography is applied in the pre-processing on each

Table 3
Experimental and numerical results of contact length, maximum penetration and dynamic grain density

A46I8V Experimental tests DEM model

dressing-a F'n (N/mm) μ lg (mm) lc (mm) Gdyn (grits/mm2) lc (mm) Error(%) lc δMAX (μm) Nc Gdyn (grits/mm2) Error(%) Gdyn

C-10 4.2 0.49 1.56 2.88 1.28 2.75 -4.6% 6.35 9.8 1.35 5.2%
C-20 10.5 0.49 2.14 4.14 1.58 4.09 -1.1% 7.01 18.2 1.68 6.2%
M-10 9.3 0.55 1.32 2.96 2.05 3.13 5.8% 4.78 18.4 2.22 8.6%
M-20 16.4 0.5 1.94 4.45 2.37 4.24 -4.7% 6.87 23.4 2.1 -11%
F-10 11.2 0.53 1.22 3.08 2.62 2.98 -3.2% 4.28 22.6 2.87 9.5%
F-20 19.3 0.49 1.84 4.12 2.93 4.06 -1.4% 6.01 30.4 2.83 -3.5%

A60K7V Experimental tests DEM model

dressing-a F'n (N/mm) μ lg (mm) lc (mm) Gdyn (grits/mm2) lc (mm) Error(%) lc δMAX (μm) Nc Gdyn (grits/mm2) Error(%) Gdyn

C-10 5.0 0.44 1.52 2.99 1.83 2.81 -6.1% 6.5 11.5 1.86 1.5%
C-20 13.3 0.47 2.05 4.24 2.38 4.08 -3.7% 12.7 20.2 2.26 -5.6%
M-10 6.9 0.45 1.44 3.1 2.17 3.27 5.4 5.6 15.7 2.19 1.1%
M-20 14.4 0.5 2.01 4.43 3 4.22 -4.7% 7.2 25.7 2.77 -7.6%
F-10 7.8 0.49 1.39 2.71 2.83 2.84 4.6% 3.6 19.5 3.13 10%
F-20 15.8 0.49 1.96 3.84 3.23 4.07 5.9% 6.5 28.5 3.19 -1.4%

Fig. 15. Example of wheel deformation: position of surface peaks unloaded and
loaded (A60K7V, a¼10 μm, C dressing).



simulation regarding the procedure described in Section 3.3.
Fig. 13 compares the bearing curves measured experimentally
(continuous lines) and the ones obtained applying Chen's model in
the DEM model (discontinuous lines). Chen's bearing ratio is ob-
tained regarding only the cutting edges on the DEM model surface.
The superposition of both coincides up to in 10 μm depth, where
the experimental bearing ratios increase rapidly. This is due to the
application of Chen's model in a discrete manner only on grit
peaks. However, as the penetration of the cutting edges lays
within the range of 10 μm, the discrete application of Chen's
model is valid to simulate the contact.

The JC model defines the yield criterion regarding the strain
rate and temperature (Eq. (27)). The material constants for tool
steels have been taken from [25]. In Eq. (27) εp is the plastic strain,
εṗ is the actual plastic strain rate, εȯ is the reference strain rate and
T is the actual temperature of the material. These three parameters
vary along the trajectory of a grit in contact with the workpiece
(rubbing, ploughing and cutting). They can be estimated by nu-
merical models [27]. In turn, the experimental determination of
the shear angle, ε ε ̇,p p and temperature regarding the cutting edge
penetration requires an extensive single-grit cutting research. In
this research, their values are assumed constant through the
contact arc. For an average chip thickness of hcu¼4 μm, a cutting
speed of vs¼24 m/s, a rake angle of α = − °60 and a temperature
of 950 K, obtaining an effective yield stress sy of 810 MPa. These
values agree with the ones obtained by [27]. The error that sup-
poses the assumption of constant deformation and temperature
parameters is smaller than neglecting the viscoplastic behaviour of
the workpiece material:
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4.3. Simulation results and discussion

Fig. 14 summarises experimental and numerical contact lengths
for each grinding wheel and dressing condition. Table 3 compiles
the same results, adding the maximum penetration δMAX and the
grain density Gdyn. The experimental-geometrical contact length
ratio ( )l l/c g is between 1.85 and 2.52 for A46I8V wheel and be-
tween 1.92 and 2.2 for A60K7V, as described in the literature [2].

The DEM model has grasped the randomness of grinding, so all
results are defined by the average and the standard deviation.
Fig. 14 shows the standard deviations of the experimental and
numerical contact length results. The dispersion of numerical re-
sults is generally narrower than the ones observed in the tests.

lc simulation results are close to the experimental ones (up to
6% error). On both wheels, lc seems not to increment according to
the dressing condition within the tested range. Wheel grade,
centrifugal forces and cutting edge sharpness parameters are si-
milar in both wheels, regardless the dressing condition. Then, the
compelling parameters are the specific normal force ′Fn, the depth
of cut ae and the surface grain density Gdyn. In turn, Gdyn depends
on wheel characteristics (average grain diameter dg and volu-
metric fraction of abrasive Vg) and dressing conditions (average
particle dimension removed by bond fracture db, dresser radius ρd
and overlap ratio ud). Grain density and peak depth determine the
bearing ratio of the surface or the supporting surface through ra-
dial depth.

Under fine dressing conditions, grinding forces are higher and,
thus, ae decreases. In turn, the medium dressing (M) obtains larger
lc than the fine (F) one within the range of variables tested. Mar-
inescu [2] asserts that dressing determines the contact stiffness,

which is directly related to the bearing ratio. Coarse dressing
(C) gets the lowest grain density and maximum penetration δMAX

with the highest ae. The single-grit force is related exponentially
with the penetration, so less grains stand higher loads penetrating
deeper. In turn, the higher Gdyn and, thus, bearing ratio of the fine
dressing reduces the penetration in the workpiece. The medium
dressing condition meets the combination of ae and grain density
that obtains the largest contact lengths on both wheels. This
confirms the relationship between contact stiffness and bearing
ratio, hence dressing.

The DEM model also offers an insight about wheel deformation
and contact stiffness. It asserts the grain deflection magnitudes
stated in the literature, about 5 μm [1]. The maximum grain de-
flection is 3.7–9.1 μm for A46I8V and 2.9–6.6 μm for A60K7V. The
force intensity on each cutting edge is defined by ′–F Gn dyn re-
lationship, but grit deflection depends also on the number of
beams and the relative position with adjacent grits. Fig. 15 shows
an example of deflection (A46I8V, a¼10 μm, C dressing). The
contact length is defined as the largest distance between grits in
contact, the sum of zmax and zmin. Some surface grits that do not
get in touch with the workpiece are also displaced due to the beam
network. The black line represents the workpiece surface and the
relative position of the cutting edges (black circles) determines the
penetration. The elastic deformation of surface grits contributes to
the enlargement of the contact length. The average maximum
penetration δMAX is 6 μm , which agrees the results of [23]. A
singular peak of 13 μm appears in the A46K7V with coarse dres-
sing and = μa 20 m, probably due to the concentration of load on a
low density area.

The DEM model foresees the grain density too. As the experi-
mental estimation of Gdyn with APS, Eq. (26) is used to calculate
Gdyn replacing the number of peaks Np by the number of DEs in
contact Nc. Numerical Gdyn results differ from the measured ones
(up to 10%). The differences are not proportional under the same
dressing conditions. However, the large dispersion of experimental
Gdyn measurements (up to 0.4 grits/mm2) remarks the un-
certainties in the APS results.

The model also allows us to analyse interesting aspects, such as
the average and maximum force per grit, or the apparent contact
pressure. The average force per grit is 1–1.5 N for the A46I8V and
0.7–1.1 N for the A60K7V. These highlights the role of the grain
density in the material removal. The maximum force per grit
reaches up to 28 N for A46I8V and 4.6 N for A60K7V. These values
are interesting to analyse the stresses in the bonding material.
Regarding the apparent contact pressure, it is 1.5–4.7 Pa for the
A46I8V and 1.8–3.9 Pa for the A60K7V. The apparent pressure
hides the ploughing and cutting processes under the apparent
contact area, so these values have to be treated carefully.

Wheel grade, centrifugal forces and cutting edge sharpness are
not studied in the simulations. Higher wheel grade makes the
wheel stiffer. Higher centrifugal forces increase the stiffness of the
wheel. Sharper cutting edges lead more efficient material removal,
increasing the depth and, thus, the contact length.

5. Conclusions

A numerical methodology has been presented to simulate the
contact grinding wheel–workpiece in surface grinding. The 3D
structure of the grinding wheel is built by means of DEM. The
surface topography is implemented applying Chen's model in a
discrete manner. The combination of Shaw's hardness model for
single-grit cutting and a viscoplastic behaviour of the workpiece
leads the estimation of the contact reaction between a surface
element and the workpiece.



DEM has proved to be a valuable tool for the modelling of
grinding wheels. Simulation results fit well with the experimental
contact length measurements within the 6%. The model captures
the influence of the surface topography and it highlights the
combined effect of the normal force, depth of cut and grain den-
sity. Shaw's indentation analogy of single-grit force has shown its
potential for the estimation of grinding forces in a simple way. But
the key of its success is on the viscoplastic material assumption,
which surprisingly has been disregarded so far in the contact
models. Chen's topography combined with Malkin's grain release
model reproduce the peak distribution through depth regarding
dressing conditions. The combination has shown the sensitivity to
capture dressing hints on grinding forces. The DEM model of the
grinding wheel has proved the capacity to reproduce the wheel's
granular nature and stiffness, leading the modelling of wheel de-
flection when grinding. Among all, the combination of DEM wheel
body and surface topography stands out because of the description
of the randomness of the grinding wheel, reflected on the dis-
persion observed in the results. The versatility of the model for-
mulation allows the further adaptation for other purposes, like the
workpiece surface roughness, contact stiffness, grit pull-out,
grinding forces, effect of the centrifugal force or thermal analysis
including the wheel.
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