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Quadratic solid-shell elements for nonlinear structural
analysis and sheet metal forming simulation

Peng WANG, Hocine CHALAL, Farid ABED-MERAIM

LEM3, UMR CNRS 7239 - Arts et Métiers ParisTechtuk Augustin Fresnel, 57078 Metz

Cedex 03, France

Abstract In this paper, two quadratic solishell (SHB) elements are proposed for the three-
dimensional modeling of thin structures. These brd a twenty-node hexahedral sefsthell
element, denoted SHB20, and its fifteen-node priemeounterpart, denoted SHB15. The
formulation of these elements is extended in thrkwto include geometric and material
nonlinearities, for application to problems invaolgilarge displacements and rotations as well as
plasticity. For this purpose, the SHB elementsarepled with large-strain anisotropic elasto-
plastic constitutive equations for metallic matkriaAlthough based on a purely three-
dimensional approach, several modifications an@dhtced in the formulation of these elements
to provide them with interesting shell features.plarticular, a special direction is chosen to
represent the thickness, along which a user-defmedber of integration points are located.
Furthermore, for efficiency requirements and fdewhting locking phenomena, an in-plane
reduced-integration scheme is adopted. The reguttirmulations are implemented into the finite
element software ABAQUS/Standard and, to assess pleformance, a variety of nonlinear
benchmark problems are investigated. Attentionhentfocused on the simulation of various
complex sheet metal forming processes, involvimgdastrain, anisotropic plasticity, and double-
sided contact. From all simulation results, it agpethat the SHB elements represent an
interesting alternative to traditional shell anticselements, due to their versatility and cap&pili

of accurately modeling selective nonlinear benclnpoblems as well as complex sheet metal

forming processes.

Keywords finite element, quadratic solidhell, thin structures, nonlinear analysis, antgutr

plasticity, sheet metal forming.



1 Introduction

Nowadays, the numerical modeling has become arspedsable simulation tool in many
fields of the industry, such as automotive, aerospand civil engineering. The finite element
(FE) method, a widespread numerical tool, provgiesit assistance to engineers in the design of
products and optimization of manufacturing procesdgespite the growing development of
computational resources, reliability and efficiemfythe FE analysis remain important features in
the simulation practice. The present work deal$ lhie simulation of thin structures, which is
conventionally achieved using classical shell aadtiouum solid elements. However, in some
circumstances, traditional shell and solid elemenfger from various locking phenomena, such
as membrane locking, thickness locking, shear tagketc. In addition, shell elements are often
not appropriate for the modeling of complex sheetainforming processes involving double-
sided contact, partly due to the use of planestassumptions in their formulation. To remedy
these shortcomings, considerable effort has beeote® to the development of scighell
elements during the last few decades. The key lddend this original concept of solishell
elements is to combine the advantages of both EBntdogies, namely shell and continuum
formulations. The main benefits of this sefsthell concept may be summarized as follows: easier
formulation, based on a purely three-dimensiongragch, with displacements as the only
degrees of freedom; consideration of fully threexehsional constitutive laws, with no plane-
stress restrictions; direct calculation of thiclkesriations; natural treatment of double-sided
contact, thanks to the availability of actual topdabottom surfaces; 3D modeling of thin
structures, using only a single element layer amd fntegration points, while accurately
describing the through-thickness phenomena.

Most solid-shell elements developed in the literature are dbase the reduced-integration
technigue (see, e.g., Zienkiewicz et al. [1]). He tase of linear interpolation, this consists most
often in adopting an in-plane one-point quadratwiée, while considering a number of
integration points along the thickness. In addittonthe reduced-integration scheme, several
other numerical strategies, such as the assumauh strethod (ASM), the enhanced assumed
strain (EAS) approach, the assumed natural strAMS] concept, were developed in the
literature to eliminate various kinds of lockinggritomena (see, e.g.{27]). Note that, for linear

under-integrated sokdhell elements, special stabilization proceduregequired for the control
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of zero-energy (hourglass) modes, which are inddmethe reduced-integration rule (see, e.g.,
Abed-Meraim and Combescure [12], Schwarze et 8])[1

In this paper, two quadratic solshell elements are proposed for the 3D nonlinealyars of
thin structures. These formulations are extendeddlode geometric and material nonlinearities,
following the earlier works on the family of SHBeahents. The first solghell element in this
family was developed by Abed-Meraim and Combesd6ie and consists of an eight-node
hexahedral element denoted SHB8PS. Its formulatvas subsequently improved by Abed-
Meraim and Combescure [12], especially in termdogking reduction, while the hourglass
modes were efficiently controlled by implementing new stabilization procedure. The
performance of the SHB8PS element was demonstttedgh a representative set of selective
benchmark tests as well as sheet metal formingeps®s involving large strains, anisotropic
plasticity, and contact (see Abed-Meraim and Comies[12], Salahouelhadj et al. [19]). Then,
a six-node prismatic solghell element denoted SHB6 was developed by Trirdl. §20], as a
complement to the SHB8PS element for the modelingomplex geometries whose meshing
requires the combination of hexahedral and prissrteéments. Although the performance of the
SHB6 is good in the whole, its convergence rateaismslower than that of the SHB8PS, and
requires finer meshes to obtain accurate solutidwe recently, the quadratic counterparts of
the above hexahedral and prismatic sdltell elements were developed by Abed-Meraim et al.
[21], in order to improve the overall performancel @onvergence rate. These quadratic versions
consist of a twenty-node hexahedral element, ddn&dB20, and a fifteen-node prismatic
element, denoted SHB15. Likewise, their formulatisnbased on a fully three-dimensional
approach with an in-plane reduced-integration riliree performance of these elements has been
evaluated by Abed-Meraim et al. [21] within thenfrawork of small strain and elastic benchmark
problems. In the present work, however, the fortmtaof the quadratic SHB15 and SHB20
elements is extended to the framework of large latgments and rotations. Moreover, the
resulting formulations are coupled with large-straanisotropic elasto-plastic constitutive
equations, which allows modeling complex and cinglleg structural problems, such as sheet
metal forming processes.

The remainder of the paper is outlined as folloWse general formulation of the quadratic
solid-shell elements, SHB15 and SHB20, is presented atidde2. Then, the performance of

these elements is assessed in Section 3, firatghra variety of linear and nonlinear benchmark
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problems. In Section 4, the proposed formulatiaesapplied to the simulation of complex sheet
metal forming processes, including springback, anental forming, and deep drawing tests.

Finally, the main conclusions and remarks are drem®ection 5.

2 Basic formulations for the quadratic solid-shell elements

Despite some differences between the prismatichexdhedral solieshell elements (e.g., in
terms of geometry, interpolation functions, etthgir theoretical formulations show a number of
similarities. In this section, a general formulatiocommon to both SHB15 and SHB20
solid-shell elements, is introduced. This formulationjckihwas previously developed by Abed-
Meraim et al. [21] within the framework of smalkahs, is extended here to the large-strain
framework.

2.1 Geometry and integration points

Figure 1 illustrates the reference geometry andtion of integration points for the SHB15
and SHB20 solidshell elements. The starting point for the formolatof these quadratic
solid-shell elements is the classical 3D approach, useddnventional quadratic continuum
elements, with fifteen nodes for the prismatic SHRlement and twenty nodes for the SHB20
element. Then, a special directigh (see Fig. 1) is chosen as the thickness direcatong
which a user-defined number of integration poimesaranged. In thé -1 plane corresponding
to each( -coordinate of these through-thickness integratioimts, are defined a total number of
three integration points for the prismatic SHB1Bneént, and four integration points for the
hexahedral SHB20 element, as shown in Fig. 1. Doedinates and associated weights of these
integration points can be obtained using the atatsGauss distribution method (see, e.g.,
Zienkiewicz et al. [22]). It is worth noting thah the case of full integration for conventional
guadratic solid elements, three in-plane integmatipoints with three through-thickness
integration points are required for prismatic elatsewhile nine in-plane integration points with

three through-thickness integration points are dieselexahedral elements.
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Fig. 1. Reference geometry and location of integngpoints for the SHB15 and SHB20

solid-shell elements.

Moreover, to provide the proposed elements withesdesirable shell features and to reduce
locking, special local element frames are introdiycghich are attached to the element mid-
planes associated with each integration point. Hes¢ local physical coordinate systems,

associated with th& -coordinate of each integration point, the fullyed-dimensional elasticity

tensor of the material is specified. Note that ikisa first major difference with conventional

continuum elements, for which no such local elenfimhes are considered. Figure 2 illustrates,
in the case of the SHB20 element, the definitiohese local element frames, which are built
using the following procedure. First, the elememd-plane corresponding to a given integration

point k is defined using the physical nodal coordinatdsclvis represented in Fig. 2 by the four

points P, P, P and P}'. These latter points allow us, in turn, to defioer mid-pointsm, ,
m¥,, m%, and m¥,, which are the barycenters é)IPlk Ij;) (sz Ij;) (Pe"< Fff) and(P)f Ff)
respectively. Then, the first base vectel, of the local coordinate system is defined as gpein

parallel to(m'f11 m';3) , while the second vectd, is defined parallel t0€ ms, m§4) . Vector €} is

modified by adding a correction terej, so that vectorg! and(e; + éf) are orthogonal, which

gives
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Finally, the third base vecta is simply obtained by the following cross-prod(see Fig. 2):

eh=dx(&+&). )

The same strategy is applied to the prismatic SH8&tent, in order to define the associated

e (1)

local coordinate systems, and is not repeatedfbemnciseness.

Fig. 2. Schematic representation of the local etgrframe associated with tlkéh integration
point of the SHB20 element.

2.2 Quadratic interpolation for the SHB elements

Using the classical isoparametric approach, the Ed SHB20 soligshell elements adopt

the conventional shape functionN, for quadratic prismatic and hexahedral elements,
respectively. The spatial coordinatgsand the displacement field within the element are

expressed as functions of the nodal coordinatestendodal displacement, respectively
Xi:XiINI(fa”i():le(f’O’Z)xil : )
=1

u =d,N,(£7.4), (4)



where the lowercase subscriptaries from 1 to 3, and represents the spatiaidioate directions,

while the uppercase subscripgoes from 1 ta, with n being the number of element nodes
(n=15 for the SHB15 element, and= 20 for the SHB20 element). Note that in Eq. (4) above
the convention of implied summation over repeatetices has been used, which will be also

adopted in the sequel.
2.3 Strain-displacement relationship and discrete gradient operator

Based on the interpolation of the displacementdf{&lq. (4)), the linear pa# of the strain
tensor is defined by the following relationship:

“:ii:%(Ui,i+Uj,i):%(an|,;+d,—|N|,i)- (5)

The combination of Egs. (3) and (4), along with #aeression of the shape functions

N, (£,n7,{), allows us to develop the displacement field inféilwing form:

U =8y, +a;X +a;X,+a;x,+c,h,+ch+---+c,h (6)

where h, are functions of the nodal coordinatéss, ¢, in the reference coordinate system,

and a varies from 1 to 11 for the SHB15 element, and ftbito 16 for the SHB20 element. For

the SHB15 element, thie, functions are expressed as follows:

{hlzfz, h,=n{,h,=én, h,=én¢ h,=& h=n* h,=¢° -

h,=&¢, hy=n°C, hy,=&?, h,=nd>?,
while for the SHB20 element, they are given by

h=¢&, h=n{, h,=¢én,h,=¢&,h,=n> h,=0%h,=én¢,
hy=&n, h=&, ho=n°¢ hy=n°C, h,=¢0% h=nd (8)
h.l.4=EZOZ! h15:§z,72(, h16:5’7(2-

By evaluating Eq. (6) at the fifteen nodes of th#B35 element, respectively, at the twenty
nodes of the SHB20 element, one obtains the fofigwWifteen-equation system, respectively,
twenty-equation system:

d, =a,s+a;x;, +a,X, +azX, +c;h, +c,h, +---+c,h,, 1=123 9)
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where df =(d,, d, d,--,d,) represent the nodal displacement vectors, and

X" = (X, X, X4, -+, X,,) are the nodal coordinate vectors. The constartowet =(1,1,--,9) is

a fifteen-component vector, in the case of the SkBlEment, and a twenty-component vector,

for the SHB20 element. As to vectdrg, these are constant vectors whose expressionbecan
easily obtained by evaluating tie functions at the element nodes in the referencedavate

system(é&,n,{) (for the full details, see Abed-Meraim et al. [R1]

By introducing the Hallquist [23] vector§, :a—N , with N the vector whose
)ﬂf:r;:(:o
components are the shape functioNs, one can demonstrate the following first set of

orthogonality conditions, which is common to boléneents:

bl h, =0
b/ =0 |, (10)
bi X; =4,

wherei, j =1,2,3 while g =1,...,1], for the SHB15 element, and=1,...,1€, for the SHB20
element.

Then, a second set of orthogonality conditionseatablished for the SHB15 element

h 3=0, h] (=0
h!3=0, hl,(=4

hgﬁ,:%, N (5= 4

h, 3=0 ’ (11)
h =4

h =4

h] =12

hy =0

while for the SHB20 element, one obtains



h! 3=0, h] =0
hI3=0, h =0
h!3=0, h,(5=0
h! =16, h,5=0
hl 3=16,h,5=0
hl 3=16,h,5=0
h!3=0, h.5=0
hi =0, h,(5=0

(12)

Using the above orthogonality conditions (Eqs—I1%)), and the scalar product of Eq. (9) by

ij, s" andh’, successively, the expression of the unknown eosh;, andc, in Egs. (6) and

(9) can be obtained as follows:
a; =bj 8, ¢, =y, M, (13)
where the expressions of vectars for the SHB15 element are given by
b =L, (h] =(h] ;) b} ) + L, ,(h} = (h, X, ) b]
Ya a1\ L a2\'2 28 | Y

e hg—%sTj—((hg—?l(FngJ b{}LM( H,-(H,0x) 1)
|

r_44 ;4
L, hs—Esj—(£h5—T5§jD>gj g
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while for the SHB20 element, vectoyg are given by

v5 =L (] = (h} ;) b] )+ L, (= (h,x, ) b] )
+|_03(h; -(hi ) b{)+L04Khz—i5‘STJ_(hT4_g§jD>g) J}
o N (L LSS
(
(

hY = (] ;) b} ) + L, oG = (1 ;) b] )
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with
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L 4 8 |
a,f=1..,16

By differentiating Eq. (6) and using Eq. (13), thpression of the displacement gradient
is derived as follows:
u, =(b] +h, ,vi)d,, (14)
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with a varying from 1 to 11 for the SHB15 element, aratrirl to 16 for the SHB20 element.
Finally, the expression of the strain field, whishrelated to the nodal displacements by the

discrete gradient operat@, is given by

uyvy d
u X
0.(u)= “* =B =B0d, |, (15)
S ux,y+uy,x dy
u,,+u,, z
ux,z-'_uz,x

where the discrete gradient operaBitakes the following matrix form:

b} +h, 7, 0 0
0 bj +h, o 0
0 0 bT +h T
B= . . . ; z o, 2V ) (16)
by + ha, yYa bx + ha, xVa 0
0 b; +h, ,vy; bj+h, v,
bl+h, ., 0 blth,y

2.4 Variational principle

The assumed-strain formulation of the SHB15 and 3H&lid-shell elements is based on the
simplified form of the HuWashizu mixed variational principle, as suggestgdSimo and

Hughes [24], which writes at the element level
Jn(z):jg & Bdo-a"d* =0, (17)

where d denotes a variatiorg, the assumed-strain rate,the Cauchy stress tensar,the nodal
velocities, andf® the external nodal forces. It is worth noting thatthe formulation of the
linear versions of the solighell elements (i.e., SHB6 and SHB8PS, see, elgpdMeraim and
Combescure [12], Trinh et al. [20]), the assumedistrates has been expressed in terms of a
projected matrixB, which is derived from the classicBl operator, in order to eliminate most
locking phenomena (e.g., membrane locking, sheekig, etc.). For the present quadratic

solid-shell elements (SHB15 and SHB20), no significargkiog has been revealed when
12



evaluating their performance on a selective andesgmtative set of benchmark problems (see
Abed-Meraim et al. [21]). Consequently, no projectis applied to the discrete gradient operator

B and, accordingly, the expression of the assunradhstate reduces to

g(x,t)=Bd. (18)

Substituting the above equation into the simplifiedm of the HuWashizu variational
principle, the expressions of the element stiffmaasrix and internal force vector are obtained as

follows:
K, =jQ B'[C*BdQ, f™ =jQ B [6(¢) dQ, (19)

where C® is the fourth-order elasto-plastic tangent modusose expression will be detailed

in the following subsection.
2.5 Constitutive equations

The formulation of the quadratic solghell elements SHB15 and SHB20 is extended in this
paper to the framework of large displacements atations, and is coupled with advanced large-
strain anisotropic constitutive equations for nmetahaterials. In this process, two types of local
frames need to be introduced with respect to tbbajlcoordinate system, as illustrated in Fig. 3.
The first type of local frame, which has alreademealefined in Section 2.1 (see Fig. 2) and
denoted as the “element frame”, is attached toefleenent mid-plane associated with each
integration point. The second type of local phylsaordinate system is the so-called “material
frame”, which is introduced to define the anisotcoplastic behavior of the material. The time
integration of the large-strain anisotropic elgstastic constitutive equations, which is achieved
at each integration point, also uses this localemelt frame in order to satisfy the objectivity
(material invariance) requirements. Both the loel@ment frame and the material frame are
defined relative to the global coordinate framethgir rotation matrixP and £, respectively,

which allows mapping any vectar or tensorA from local to global coordinate systems.

13



{ thickness direction
e integration points

e
n

“global frame”

Fig. 3. lllustration of the local coordinate sysgeused in the formulation of the quadratic

solid-shell elements.

For the modeling of the anisotropic plastic behguilbe quadratic Hil48 yield criterion [25]
is coupled with the formulation of the SHB elememscordingly, the plastic yield function is

given by

F=yJ6-0):M:(c'-a)-V, (20)

where ¢’ denotes the deviatoric part of the Cauchy streasare, and a is the back-stress
tensor, which describes the kinematic hardeninghef material. The fourth-order tensht
contains the Hill anisotropy coefficients (F, G, H,M and N). The isotropic hardening of the
material, which characterizes the size of the yseidace, is modeled by the scalar function

The plastic strain rate tens®® is obtained using the classical associative mdkiiv rule,

which follows the normality law with respect to thield surface

DP :x"_F:xv, (21)
Jo

wherek andV represent the plastic multiplier and the pladtievfdirection, respectively.
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In the local material frame, the Cauchy stress catebe expressed using the following hypo-

elastic law:
6=C*:(D-DP), (22)

where the second-order tensbrdenotes the total strain rate, whi¥ is the fourth-order
elasticity tensor. Note that a modified plane-stigpe elasticity matrix has been adopted in the
formulation of the linear versions of the SHB el@ese(see, e.g., Abed-Meraim and Combescure
[12], Trinh et al. [20]), in order to avoid the lkang phenomena encountered when the classical
fully three-dimensional elasticity tensor is comsel. By contrast, such a modification is not
required for the present quadratic versions ofS8H8 elements, since their performance has been
assessed with both the plane-stress-type elastiztyix and the classical fully three-dimensional
one, showing quite equivalent results. Therefdne, dlassical fully three-dimensional elasticity
matrix is implemented with the proposed quadratmsions of the SHB elements, which
represents a major advantage with respect tolihear counterparts.

The plastic multiplierk in Eq. (21) is determined by using the consistermydition F =0,
which leads to

V:C®:D

= , (23)
V:C*:V+V:H +H,

where the hardening modull, and H, are scalar and tensor components involved in the

evolution laws describing the isotropic and kinamatrdening, respectively. The latter can be

expressed in the following generic form:

Y =H,A (24)
a=H,A\

Finally, by substituting the expression of the pitasultiplier A into the hypo-elastic law (22),

the elasto-plastic tangent modulus is derived as

(ce:v)o(v:ce)
V:iC®:V+ViH, +H, '

C®=Ct-y (25)

wherey =0 for elastic loading/unloading, ang=1 for strict plastic loading.
15



3 Simulation of linear and nonlinear benchmark prodems

The formulations of the quadratic selghell elements (SHB15 and SHB20) presented above
have been implemented into the finite element cMBAQUS/Standard. A representative set of
linear and nonlinear benchmark tests is selectédisnsection to evaluate the performance of the
proposed SHB elements. The obtained results atemsgtically compared, on the one hand, with
those provided by ABAQUS quadratic elements, usheg same in-plane meshes, and on the
other hand with reference solutions taken from litexature. The description of the finite
elements used for comparison purposes is giverabiell. Note that, for the proposed SHB15
and SHB20 formulations, only two integration poiateng the thickness are sufficient to model
the following linear and nonlinear elastic benchkiasts, while three integration points are used
in the case of elasto-plastic benchmark problems.

In this section, all geometries are discretizedngsthe following nomenclature. For
hexahedral elements, meshes @kINL,xN3 elements are adopted, wherg dénotes the number
of elements in the length direction; Id the number of elements in the width directiamd N is
the number of elements in the thickness directféor. meshes with prismatic elements, the
nomenclature adopted is {ANxx2)xNs, which corresponds to twice the total number of
elements involved in hexahedron-based meshes,adtles tsubdivision of each hexahedron into
two prisms. For ABAQUS shell elements, the nomencéa adopted for quadrilateral shell

elements is ANy, while the nomenclature for triangular shell elatsas NxN,x2.

16



Table 1
Quadratic prismatic, hexahedral, and shell finiggreents used in the simulations.

15-node prismatic solighell element with a user-

SHB15 defined number of through-thickness integratiomgmi
Prismatic elements / C3D15 15-node prismatic solid element with three integrat
Triangular shell element points through the thickness

STRI6S 6-node triangular she_II eleme_nt with a user-_defined

number of through-thickness integration points
SHB20 20-_node hexahedral solishell _element_with auser-
defined number of through-thickness integratiomgmi

Hexahedral elements / C3D20 20-node hexahedral solid element with three
Quadrilateral shell integration points through the thickness

element 8-node reduced-integration quadrilateral shell elem

S8R with a user-defined number of through-thickness
integration points

3.1 Bending of a clamped square plate

The performance of the proposed SHB elementsssdiraluated on a linear elastic problem,
which consists of a clamped square plate subjdotadccentral concentrated force. The geometric
dimensions, material properties, and boundary ¢mmdi of the problem are all illustrated in Fig.

4. The value of the concentrated point load is ehaso that the analytical displacement at the

center of the plate ig,. 4 = 0.0056E = ., whereD :E—t32 is the flexural rigidity of the

D 12(1-v7)
plate [26]. Owing to the symmetry, only one quartérthe plate is discretized using three
different regular meshes, in order to assess theergence rate of the proposed SHB elements.
The convergence results for the SHB elementsrmg@f central point displacement normalized

with respect to the analytical displaceme} =1, are shown in Fig. 5 along with the results

given by ABAQUS quadratic elements. Among the pdsm and triangular elements, the
ABAQUS quadratic shell element STRI65 has the &stenvergence, followed by the proposed
SHB15 element, while the convergence of the ABAQyu@dratic solid element C3D15 is the
slowest. For the hexahedral and quadrilateral ai¢snéhe convergence of the proposed SHB20
element is similar to that of the ABAQUS quadrathell element S8R, which is much faster than
that of the ABAQUS quadratic solid element C3D20.

17
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Fig. 4. Geometry, material properties, and boundanditions for the clamped square plate.
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Fig. 5. Convergence results for the clamped sqpiate subjected to a central concentrated force.

In addition to the convergence results above, aitgety analysis with respect to the in-plane
mesh distortion is conducted here, as proposediwsAle Sousa et al. [8]. To this end, a quarter
of the square plate is discretized by (2x2x2)xImelats, in the case of triangular shell or
prismatic elements, and by 2x2x1 elements, in #we of quadrilateral shell or hexahedral
elements. The mesh distortion is created by mothegcentral node of the mesh (see point B in
Fig. 6) with a predefined distanck(0< d<12), as illustrated in Fig. 6. Again, the normalized
displacement of the central point A (see Fig. 8)adunction of the distortion parametgy is
investigated. Figure 7 shows the effect of the odigin parameterd on the normalized
displacemenof the central point A, as obtained with the SHBne¢nts and ABAQUS quadratic
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solid and shell elements. With regard to mesh disto sensitivity, the ABAQUS triangular shell
element STRI65 shows better performance than thB1SHelement; nevertheless, the latter
performs better than the ABAQUS prismatic solichedat C3D15. For the hexahedral elements,
the sensitivity of the proposed SHB20 element tshmgistortion is similar to that displayed by
the ABAQUS shell element S8R, while the ABAQUS guid solid element C3D20 exhibits
the highest sensitivity to mesh distortion and pdes poor results with respect to the reference

solution for all values of the distortion parameder

d
sym k5 F
! A
_XB
_______________ <] 1d
sy
(a) triangular shell / prismatic elements (b) quadrilateral shell / hexahediaheents

Fig. 6. lllustration of in-plane distorted meshesd quarter of the clamped square plate.
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Fig. 7. Effect of the in-plane mesh distortion be hormalized displacement of the center point

of the clamped square plate.
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3.2 Bending of a clamped rectangular plate

The second linear elastic problem consists of epéad rectangular plate as shown in Fig. 8.
Two types of bending loading are considered: a eotmated forceF =4x10* at the central
point of the plate, and a uniform pressie10™ at the top surface of the plate. Within the
small-strain framework, the deflection at the calnfpoint of the plate can be determined
analytically by the following expressions, whicle aaken from reference [26]:

Concentrated force loadindy, ., = 0.00725F|:)LZ = 7.23x107°

4
Uniform pressure loadindd, ., = 0.0026% = 256x10°°

Z E=1.747xx1C’

Fig. 8. Geometry, material properties, and boundanditions for the clamped rectangular plate.

Owing to the symmetry, only one quarter of theglatanalyzed using the SHB15 and SHB20
elements. The convergence results in terms of riaadadeflections at the central point of the
plate (point A in Fig. 8), corresponding to botipeg of loading, are reported in Tables 2 and 3.
One can observe that, for this linear elastic pesblem, the SHB20 sokdhell element has a
convergence rate similar to that of the ABAQUS kilkeiment S8R, for both considered types of
loading, while the convergence of the ABAQUS saldment C3D20 is much slower. For the
SHB15 prismatic soligshell element, the convergence is slightly slowsant that of the
ABAQUS triangular shell element STRI65, but fadtean that of the ABAQUS prismatic solid
element C3D15.
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Table 2

Normalized deflection at point A: case of conceteidorce.

Number of STRI65 C3D15  SHB15 Nymberof S8R C3D20  SHB20

elements U /Uzen Uz/Uzpen Uz/Uzpen  EIEMENS  Uy/Uzien Uz/Uzeny Uz/Uzgren

(5x1x2)x1 0.1834 0.0614 0.1845 Sx1x1 0.9526 0.0028. 9510
(10x2x2)x1  0.8639 0.4618 0.6536 10x2x1 0.8163 ®G3950. 8017
(20x4x2)x1  0.9934 0.8139 0.9089 20x4x1 0.9905 (B864 0.9890

(50x10x2)x1 1.0037 0.9743 0.9916 50x10x1 1.0019 0.9755 1.0018

Table 3

Normalized deflection at point A: case of unifornegsure.

Number of STRI65 C3D15  SHB15 Number of S8R C3D20  SHB20

elements Uz/Uz(ref) Uz/Uz(ref) UZ/UZ(ref) elements UZ/UZ(I’ef) UZ/UZ(I'ef) UZ/UZ(ref)

(5x1x2)x1  0.3177 0.0149 0.0055 S5Sx1x1 1.0208 0.0018.0201
(10x2x2)x1  1.0102 0.5747 0.7762 10x2x1 1.0255 @696 1.0289

(20x4x2)x1  1.0248 0.9233 0.9667 20x4x1 1.0176 ®904 1.0176

3.3 Pull-out of an open-ended cylindrical shell

In this test problem, and some others that follihwe,performance of the SHB elements will be
evaluated in the framework of geometric nonlinéssif(i.e., large displacements and rotations).
The first test in this category consists of a fedastic open-ended cylindrical shell, which is
pulled out by two opposite radial forces as illagd in Fig. 9. This benchmark test has been
studied by several authors (see, e.g., [14;29]), due to its particular boundary conditions
involving very large rotations. Considering the lgeom symmetry, only one eighth of the

cylindrical shell is modeled, as shown in Fig. @eTloaddisplacement curves at point A in the
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z-direction and at points B and C in tkelirection, which are obtained with the SHB elersent
are compared in Fig. 10 with those given by ABAQEI&ments as well as with the reference
solution taken from Sze et al. [29]. The shapeheflbad-displacement curves reveals that the
solution exhibits two main stages: the first stagegoverned by bending effects, which is
characterized by large displacements and rotatiasmsle the second stage is dominated by
membrane effects. The transition between the tagestis marked by a snap-through point at a
critical force value of 22xfQwhich is characterized by a reversal of displaaenof point C in
the loaddisplacement curve. The loatisplacement curves obtained with the SHB elemai@s

in excellent agreement with the reference soluasnwell as with those given by ABAQUS
elements. However, the C3D20 ABAQUS element reguiiger meshes in order to obtain an

accurate solution for this severe benchmark test.

F/8=10000

E=1.05<10’
v=0.3

Fig. 9. Geometry, elastic properties, and boundanditions for the open-ended cylindrical shell

subjected to radial pulling forces.
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Fig. 10. Loaddisplacement curves for the open-ended cylindsball subjected to radial pulling

forces.

3.4 Hemispherical shell with a hole

Figure 11 illustrates a free hemispherical shethvan 18° circular hole at its pole (see Park et
al. [30], Sze et al. [31]). The shell is loadedabgair of alternating forces at 90° intervals. Qgvin
to the symmetry of the problem, only one quartethaf model is discretized. The simulation
results obtained with the SHB elements, in termbadl-displacement curves at the load points
A and B, are compared in Fig. 12 with those givgnrABAQUS elements as well as with the
reference solutions given by Park et al. [30] and & al. [31]. It can be seen once again that the
SHB elements perform very well with respect to tbéference solutions, which is also the case
for ABAQUS prismatic and shell elements. Howevey,painted out in the previous nonlinear
benchmark problem, a finer mesh is required forABAQUS quadratic solid element C3D20,

in order to obtain an accurate solution.
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ree
Fig. 11. Geometry, elastic properties, and boundangditions for the hemispherical shell
subjected to alternating radial forces.
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Fig. 12. Loaddisplacement curves at points A and B for the hph@scal shell subjected to

alternating radial forces.

3.5 Cantilever plate subjected to a concentrated force

An elastic cantilever plate with a concentrateadtéoat one corner, as proposed by Hsiao [32],
is considered here. The geometric dimensions,ielpsiperties, and boundary conditions of the
problem are all summarized in Fig. 13. Figure ldores the loaddisplacement curves at the
corner point A, in the, y, andz directions (see Fig. 13). In this Fig. 14, theutessobtained with

the SHB elements are compared with those givenBA®@US quadratic solid and shell elements,
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on the one hand, and with the reference solutiorendgy Hsiao [32] and Barut et al. [33], on the
other hand. These comparisons reveal that thetsegiuen by the SHB elements are in very good
agreement with the reference solutions, whichge #he case with the ABAQUS quadratic shell
elements STRI65 and S8R and the ABAQUS prismatid stement C3D15. However, adopting
the same coarse mesh as that used for the SHB28&Rcalements (i.e., 4x3x1 elements), the
solution given by the ABAQUS solid element C3D20sfé&ar from the reference solution, which
confirms once again the need for resorting to nfur meshes to achieve an accurate solution.

40

T T T 4C
-W
35 A - 35 i
30 . 30 il
o 25 - o 25 i
: s
% 20 . 5 20 _
-‘3 15 = Hsiao [32] . -‘E 15 * Hsiao [32] T
10 o Barutetal. [33] | 10 o Barutetal. [33] |
SHB15 (1&12x2)x1 SHB20 43x1
5 - - C3D15 (1&12x2)x1- --- C3D20 &3x1 A
0 . , _---- STRIB5 1&12x2 0 """ S8R 43
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30
Displacement Displacement
(a) triangular shell / prismatic elements (b) quadrilateral shell / hexahediaheents

Fig. 14. Loaddisplacement curves for the cantilever plate uadesncentrated force.
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3.6 Bending of a clamped twisted beam

A clamped twisted beam under out-of-plane loadimgamalyzed in this section, which is
considered as a severe nonlinear benchmark tesstigated by a number of authors in the
literature (see, e.g., [12, 34, 35]). All geometditnensions and material properties for this
twisted beam problem are specified in Fig. 15. [Diagl-displacement curves at the loading point
in thex, y, andz directions are reported in Fig. 16. In this Fig, fhe results obtained with the
SHB elements are compared with those given by AB&QUadratic solid and shell elements, on
the one hand, and with the reference solution gbyeMostafa et al. [35], on the other hand. This
comparison shows that the results obtained withSH8 elements are in excellent agreement
with the reference solution as well as with thatgi by the ABAQUS quadrilateral shell element
S8R. However, taking the same mesh as that usedh&®rSHB15 element, the ABAQUS
triangular shell element STRI65 failed to convengehis nonlinear benchmark test, while the
C3D15 element provides less accurate results, wienbals the need for a finer mesh. The latter
observation is far more critical for the C3D20 edst) which provides once again the farthest

results with respect to the reference solution.

E=2.9%10
v=0.22
L=12
b=1.1
t=0.05

F =6(
Fig. 15. Geometry, elastic properties, and boundangitions for the twisted beam subjected to

out-of-plane loading.
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Fig. 16. Loaddisplacement curves for the clamped twisted bedjested to out-of-plane

loading.

3.7 Bending of a clamped curved beam

Bending of a curved beam, as illustrated in Fig.i¢ & typical nonlinear benchmark test for
beam structures, in which various deformation mddas, tension, bending, shear) are involved
(see Smoléski [34]). The three-dimensional displacement & kbading point is investigated
using the proposed SHB elements and ABAQUS quadralements. The corresponding
load-displacement curves are reported in Fig. 18 aloith the reference solution given by
Smoleiski [34]. As can be seen in Fig. 18, the resultsioled with the SHB elements are in
excellent agreement with the reference solutionwali as with those given by ABAQUS
guadratic elements, except for the ABAQUS solidrelet C3D20. For the latter, the results
yielded by a coarse mesh (see Fig. 18 (b)) ar&dar the reference solution, which reveals that
the C3D20 quadratic solid element requires mucérfmeshes to achieve an accurate solution

for this nonlinear test problem.
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Fig. 17. Geometry, elastic properties, and boundangitions for the curved beam.
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Fig. 18. Loaddisplacement curves for the curved beam under eectrated force.

3.8 Inflation of an elastic—perfectly-plastic square plate

In this test, the inflation of a simply supporteguare plate, as illustrated in Fig. 19, is
considered to evaluate the performance of the pegphd&HB elements in the framework of
combined geometric and material nonlinearities.,(l&ge strains and plastic behavior). The
square plate is simply supported at its four edgesl, subjected to uniform pressure loading
P =0.6. The material parameters of the plate correspgntdirelastieperfectly-plastic behavior
are summarized in Fig. 19 (see {38]). Note that for this nonlinear test, which ihxes large
plastic strains, three integration points throufk thickness are required to obtain accurate

solutions. Owing to the symmetry of the problem]yoane quarter of the square plate is
discretized.
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E=6.Sx10* z

Fig. 19. Geometry, material properties, and boundanditions for the simply supported square

plate subjected to a uniform pressure.

With the increase in the applied pressure, the rsqudate undergoes a pillow-type
deformation mode, as displayed in Fig. 20, wheeefdlastic zones are mainly localized in the
four corners. The simulated pressutisplacement curves at the center of the platelepected
in Fig. 21. It can be seen that the results obthimigh the SHB elements are in good agreement
with the reference solutions taken from Betsch Staln [36] and Fontes Valente et al. [37] as
well as with those given by ABAQUS quadratic eletserexcept for the C3D20 solid element
and the STRIG5 shell element. The latter ABAQUSnalrts provide results that slightly deviate

from the reference solutions (see Fig. 21).

(a) SHB15 elements (b) SHB20 elements

Fig. 20. Final deformed shape for the square platker uniform pressure.
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Fig. 21. Loaddisplacement curves at the center point of theeplat

3.9 Pinched cylinder with rigid end diaphragms

The second elasto-plastic test consists of a ogfisdbjected to two opposite radial forces at
its middle and bounded by rigid diaphragms on itdse This popular benchmark problem has
been considered by a number of authors (see, [84.39-41]) to assess the performance of
finite elements in large plastic strains. The gemmedimensions, material properties, and
boundary conditions of the pinched cylinder aresalinmarized in Fig. 22. In conjunction with
the elasto-plastic material behavior, a linearrgat hardening law is considered. Owing to the

symmetry, only one eighth of the cylinder is modele
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Fig. 22. Geometry, material properties, and boundanditions for the pinched cylinder.

Figure 23 illustrates the final deformed shapehef pinched cylinder, as obtained with the
SHB elements. The simulated forcigsplacement curves at the loading point A (as tehin
Fig. 22) are reported in Fig. 24 along with theerehce solutions taken from Wriggers et al. [39],
Eberlein and Wriggers [40] and Hauptmann et al].[#lcan be seen that the results obtained
with the SHB elements are in good agreement with réference solutions along the entire
loading history, which is also the case with theABJS prismatic solid element C3D15 and the
ABAQUS shell elements STRI65 and S8R. For the C3@2&dratic solid element, however, the
force-displacement response is well predicted during e¢hestic stage of loading (up to
displacement of 100 mm), while the simulated respas overestimated at larger plastic strains
(up to 20 % with respect to the reference solujions

(a) SHB15 elements (b) SHB20 elements

Fig. 23. Final deformed shape for the pinched ddirproblem.
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Fig. 24. Forcedisplacement curves at the loading point for timelped cylinder.

4 Simulation of sheet metal forming processes

This section is dedicated to the validation of gneposed SHB elements in the context of
sheet metal forming. To this end, a set of selechignchmark problems are simulated with the
SHB elements, which consist of three well-knownpddeawing tests as well as an incremental
forming process. Despite the strong and coupledimemarities involved in such applications (i.e.,
geometric and material nonlinearities as well agtact), only a single element layer, with three
through-thickness integration points, is considyenonsidered throughout this section, for all
meshes consisting of SHB elements. The simulagsalts are compared both with those given

by ABAQUS elements and with experiment measuremtaken from the literature.
4.1 Springback simulation of U-shape deep drawing

The springback simulation of the U-shape deep drgwirocess has been proposed as a
benchmark test by the sheet metal forming communithe NUMISHEET93 conference [42].
The schematic view of the setup and its geomeitn@dsions are described in Fig. 25. All details
regarding the simulation process can be found éenréhated literature (see, e.g., [16:-43]).
This deep drawing process is divided into two stépesforming step, followed by the springback

step. During the first step, the U-shape is formaatl the maximum punch stroke of 70 mm is
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reached under a holding force of 2.45 kN (see E&(a)). Then, the springback stage of the
sheet takes place by removing the holding forceahdontact between the sheet and the tools
(see Fig. 26 (b)).

punct
holder 50 holder
y
6] 6]
R5 L/RS J 1 /blank
_ ~ R5

die o die

1 N~

Fig. 25. Setup of the U-bending tools.

(a) end of forming step (b) after springback

Fig. 26. lllustration of the deformed sheet, in thehape deep drawing test, at (a) the end of
forming step, and (b) after springback.

Both an aluminum-alloy sheet and a steel sheetcansidered in this study. The initial
dimensions of the aluminum sheet are 350 mm x 35x10r81 mm, with a friction coefficient
between the tools and the blank equal to 0.162evthe initial dimensions of the steel sheet are

350 mm x 35 mm x 0.78 mm, with a friction coeffiieequal to 0.144. The elasto-plastic
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parameters associated with both materials are sumedain Table 4, in which the following

Swift law has been considered to describe isotrbardening
Y =k(g, +€2)", (26)

where g% is the equivalent plastic strain (see the plasttd function defined in Eq. (20)).

Table 4

Elastic properties and Swift’s isotropic hardengagameters.

Material E (MPa) v & k (MPa) n

Aluminum 71,00C  0.33 0.01658 576.79 0.3593

Steel 206,00C 0.3 0.007117 565.32 0.2589

The anisotropic plastic behavior of the materialsaken into account by considering the Hill
[25] quadratic yield criterion. The Lankford coefénts associated with both studied materials

are listed in Table 5.

Table 5

Lankford’s coefficients for both studied materials.

Material o My l'o0
Aluminum 0.71 0.58 0.70
Steel 1.79 1.51 2.27

Considering the symmetry of the problem, only onarter of the blank is analyzed. The latter
is discretized by (100x5x2)x1 triangular shell oismatic elements and 100x5x1 hexahedral
elements, respectively (the mesh nomenclatureeiséime as that used in Section 3). As stated
before, only three integration points through thiekness are considered in the simulations using
the SHB and ABAQUS elements. Note that the simoatiwith the ABAQUS quadratic shell

element S8R failed to converge for both studiedenms, which clearly emphasizes the
34



limitations of this shell element in handling doedsided contact in sheet metal forming
processes.
To quantify the amount of springback for the blafier the forming stage, the angles around

the punch radius and the die radi& &nd &,, respectively, in Fig. 27) are investigated. The

simulation results obtained with the SHB elememés @mpared in Tables 6 and 7 with those
given by ABAQUS elements as well as with experimménteasurements and numerical solutions
available in the literature. On the whole, the anghfter springback predicted with the SHB
elements are in good agreement with those giveABAQUS elements, and lie in the intervals
defined by the reference results. These resultsodstrate the good capabilities of the SHB
elements in modeling sheet metal forming processbgre various nonlinearities (geometric,
material, and double-sided contact) enter into ,plgyile using only a single element layer with

few through-thickness integration points.

@) X
Fig. 27. Definition of springback angles and 6, .

35



Table 6

Springback angleg, and g, for the aluminum material.

Material  Angle (°) Experiment* Simulation* STRI65 C3D15 SHB15 C3D20 KM

6 101.5°~116.0° 62.0°~134.0° 107.28° 108.87°102.72° 106.03° 104.13°
Aluminum
g, 68.50~77.5° 63.0°~91.0° 69.85° 69.67° 70.74° 70.744.53°

* Note: The experimental and simulated intervaésgven in Flores [16].

Table 7

Springback angleg, and g, for the steel material.

Material Angle (°) Reference 2*Reference 3* STRI65 C3D15 SHB15 C3D20 SHB20

6 101.06° 100.82° 97.94° 99.67° 99.37° 97.03° 98.32°
Steel
o, 79.99° 80.45° 80.10° 80.27° 81.05° 82.33° 82.52°

* Note: Reference 2 corresponds to Dvorkin and B§b], while reference 3 refers to Park and
Oh [43].

4.2 Single point incremental sheet metal forming

For the past two decades, the incremental form@ngrtology has attracted much attention due
to its advantages in terms of economical opergbifingle Point Incremental Forming (SPIF)
has become a typical test in the context of increaidorming process (see, e.g., Bouffioux et al.,
[46], Sena et al. [47]). As illustrated in Fig. 2Bclamped square sheet is gradually deformed in
its central area by applying a spherical punch waitiadius of 5 mm following a preset path. The
punch is initially set to be tangent to the sheetage, and located 41 mm away from one side of
the sheet. The whole forming process consistsanfalowing five steps: 1) the punch indents
the sheet with 5 mm depth along tadirection; 2) the punch moves at the same depkbviong
a line of 100 mm along thedirection; 3) the punch indents a second timestieet up to a depth

of 10 mm; 4) the punch moves back, at the samedepih, following a line of 100 mm along
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the x-direction; 5) and finally an unloading step takésce, with the punch returning back to its

initial position.

y punch displacement path

100 mm

15 mm

Fig. 28. Description of the single point incremémfdaming test.

The material used for the simulations is an alumiralloy AA3103-O (see Bouffioux et al.
[46]). The associated elasto-plastic material patars are summarized in Table 8, according to
the Swift isotropic hardening law (see Eq. (26)).

Table 8

Material parameters for the AA3103-O aluminum alloy

Material E (MPa) v & k (MPa) n

AA3103-O 72,60C 0.36 0.00057 180 0.229

The contact conditions between the punch and thetsdre assumed frictionless. Because the
sheet is deformed mainly in the central area, amyg half of the model is meshed with
(60x15%2)x1 quadratic elements, in the case ofmaix elements, and 60x15x%1 quadratic
elements, in the case of hexahedral elements (atj@mmesh nomenclature is the same as that
used in Section 3). The obtained results in teripsuach forcepunch displacement correspond

to converged solutions using only a single elenheyer with three through-thickness integration
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points. Figure 29 shows the final deformed meshHisr SPIF test, as obtained with the proposed

SHB elements.

(a) (60x15x2)x1 SHB15 elements (b) 60x15%1 SHB20 elements
Fig. 29. Final deformed shape for the SPIF sheet.

The punch forcepunch displacement responses simulated with thpogedl SHB elements
are compared in Fig. 30 with those given by ABAQ&I&@ments as well as with the experimental
results provided by Bouffioux et al. [46]. It shdube noted that the simulations using ABAQUS
shell elements (i.e., STRI65 and S8R) failed toveoge, due to contact-type nonlinearities. This
suggests, once again, that finite element formanatibased on fully 3D approaches are more
appropriate to model sheet metal forming procegseshich double-sided contact enters into
play. As shown in Fig. 30, the punch forpench displacement responses obtained with the SHB
elements are in good agreement with those give ABAXQUS elements, although both lying
higher than the experimental results. Note thaillasons in the simulated curves are observed
both for the SHB elements and for ABAQUS elemelmgeed, when the punch slides during the
forming process, the contact between the punchtfamdheet within a confined zone is lost and
recovered several times, until another new zoneesamnto the same situation. This phenomenon
causes oscillations in the punch feqpench displacement curve, whose amplitudes and aumb
depend on the mesh size of the punch and the ¢be®te.qg., [48]). In order to reduce these
numerical oscillations, a refined mesh for the she@sed in the simulations, which consists of
(100x30x2)x1 quadratic elements, in the case aihmtic elements, and 100x30x1 quadratic
elements, in the case of hexahedral elements. &i8lirreports the results obtained by using
refined meshes, where it is clearly shown thatdimeulated punch fore@unch displacement

curves are much smoother than those obtained w#lse meshes.
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Fig. 30. Simulation results using coarse meshegrms of punch force evolution for the SPIF

test, along with experiments taken from Bouffiotale [46].
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Fig. 31. Simulation results using fine meshesems of punch force evolution for the SPIF test,

along with experiments taken from Bouffioux et[45].
4.3 Deep drawing of a square cup

The benchmark test of deep drawing of a square aspproposed in the Numisheet'93
conference [42] and subsequently by several oth#roes (see, e.g., Schwarze et al. [18], Xu et
al. [49]), is considered here to assess the alufithe proposed quadratic selghell elements to
model challenging industrial forming applicationghe geometric dimensions of the forming

tools are specified in Fig. 32. Two square shegit$) initial dimensions of 150x150x0.81 mm

40



and 150x150x0.78 mm, corresponding to aluminum tshed steel sheet, respectively, are
considered for the simulations. The associatedeelaastic material parameters, according to the
Swift isotropic hardening law (see Eq. 26) andwbe Mises yield surface, are the same as those
reported in Table 4.

All along the forming process, a constant blankdimag force of 16.6 kN is applied. The
friction coefficient between the blank and the forghtools is taken equal to 0.162 for the
aluminum sheet, and 0.144 for the steel sheet. @warthe symmetry, only one quarter of the
sheets is discretized with a mesh of (32x32x2)xadeptic elements, in the case of prismatic
elements, and 32x32x1 quadratic elements, in tke o& hexahedral elements (note that the
mesh nomenclature is the same as that used inoB&X}ti Also, only a single element layer is
used in the simulations with three integration poithrough the thickness. The final deformed
shapes of the sheets, which correspond to a maxipunmoh stroke of 15 mm for the aluminum

square cup and 40 mm for the steel square cughasen in Figs. 33 and 34, respectively.

y
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48 74 .

Fig. 32. Schematic view for the square cup dravairogess.
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(a) (32x32x2)x1 SHB15 elements 3IB¥32x1 SHB20 elements
Fig. 33. Final deformed shape for the aluminum aup5 mm punch stroke.

(a) (32x32x2)x1 SHB15 elements IB¥32x1 SHB20 elements
Fig. 34. Final deformed shape for the steel cufDanm punch stroke.

Three draw-in distances,PDy, and 0, corresponding to the final formed cups, as itatsid
in Fig. 35, are investigated here for both studredterials. The predicted results for the
aluminum cup and the steel cup are reported ineBadland 10, respectively. Note that, for the
same reasons discussed in the previous sheet imetahg processes, the simulations using the
ABAQUS quadratic shell elements STRI65 and S8Reéhilo converge and, accordingly, no
results are reported for these elements.

For the aluminum cup, all draw-in distances prextiowith the SHB elements lie in the range
delimited by the maximum and minimum experimentabsurements, which is also the case for

the predictions using ABAQUS quadratic solid eletsemote also that the predicted draw-in

42



distances P and 0 are identical for all simulations, which is coriersg with the assumed
isotropic plastic behavior of the sheets.

With respect to the experimental range for thelstep, the predicted draw-in distanceg D
and O, are very slightly overestimated with the SHB elatag while they are very slightly
underestimated with the ABAQUS solid elements. Méwdess, the diagonal draw-in distance
D4 predicted with the SHB elements is in good agregméth the experimental measurements,
whereas it is somewhat underestimated with the AB&olid elements. On the whole, the
proposed quadratic solidhell elements perform better than their ABAQUS rtetparts,
considering the above-discussed results and théHaicthe latter require more integration points
(IPs) per element (e.g., 27 IPs for the C3D20 etémmpared to only 12 IPs for the SHB20

element).

75 mm

75 mm

N ~ D

Fig. 35. Definition of the draw-in distances foetfinal formed square cup.
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Table 9

Draw-in distances for the aluminum cup at 15 mmagbustroke.

Number of IPs

Mesh oer element Dy [mm] Dy [mm] Dy [mm]
Min. experiment 3.80 3.90 2.30
Max. experiment 6.45 6.49 3.79
C3D15 (32x32x2)x1 9 5.52 5.52 2.59
SHB15 (32x32x2)x1 9 5.87 5.87 3.00
C3D20 32x32x1 27 5.31 5.31 2.39
SHB20 32x32x1 12 5.61 5.61 2.32

Table 10

Draw-in distances for the steel cup at 40 mm pistaike.

Number of IPs

Mesh oer element Dy [mm] Dy [mm] Dy [mm]

Min. experiment 26.75 26.75 14.06

Max. experiment 29.60 29.58 16.31

C3D15 (32x32x2)x1 9 26.57 26.57 13.64

SHB15 (32x32x2)x1 9 29.64 29.64 15.89
C3D20 32x32x1 27 26.57 26.57 13.73
SHB20 32x32x1 12 29.81 29.81 15.63

4.4 Deep drawing of a cylindrical cup

The deep drawing of a cylindrical cup is consideasdone of the most popular benchmark
problems in the context of sheet metal forming psses. In particular, this test has been often

adopted for the analysis of the earing evolutionthef cup when anisotropic plastic behavior of
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metal sheets is considered (see, e.g=598). The initially circular sheet is made of an 2890-

T3 aluminum alloy with an initial thickness of 1r6m. The plastic behavior of the sheet is
described by the Swift isotropic hardening law (&8¢ (26)) together with the Hill [25]
anisotropic yield surface. The associated mat@aaameters are summarized in Table 11. The
schematic view of the drawing setup and the dinmgrssof the forming tools are shown in Fig.
36.

§ punch
| ® 97.46 |/

blank | —— holder
R12.7
j \L - J\ .
: 7) i 4 ;
' . die
R12.7 —
©1011.48

©158.76

Fig. 36. Schematic view for the cylindrical cupwiag process.

Table 11

Material parameters for the AA2090-T3 aluminum allo

Material E (MPa) v & k (MPa) n o s f9o

AA2090-T3 70,50C 0.34 0.025 646 0.227 0.2115 1.5769 0.6923

Considering the symmetry of the problem, only onarter of the model is analyzed. Similar
to the previously investigated sheet metal fornpngcesses, only the results obtained with the
SHB elements and ABAQUS quadratic solid elemengsraported here, since the simulations
with ABAQUS quadratic shell elements (i.e., STRE® S8R) failed to converge in the current
deep drawing test. In the case of hexahedral elenfee., SHB20 and C3D20), the quarter of the
circular blank is meshed with 255 quadratic elemewhile 510 quadratic elements are used in

the case of prismatic elements (i.e., SHB15 and XG3DAIl simulations are performed using
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only a single element layer with three throughkhiss integration points. All along the forming
process, a constant holding force of 5.55 kN idiagpand the friction coefficient between the
sheet and the forming tools is taken equal to Bigure 37 illustrates the geometric shape of the

formed ear on a quarter cup obtained with the SléBients.

(a) (255%2)x1 SHB15 elements (b) 255%x1 SHB20 elements

Fig. 37. Final deformed shape for a quarter cup.

The earing profile predictions given by the SHBmnadats and ABAQUS solid elements are
reported in Fig. 38 along with the experimental sugaments provided by Yoon et al. [52]. On
the whole, it can be observed that both the shagdettee height of the earing profiles predicted
with the proposed SHB elements are in good agreemih the experimental results. More
specifically, in the range around the experimem@ék value, the results given by the SHB
elements are the closest to the experimental hgightcomparison with ABAQUS predictions.
However, the predicted cup heights are underestunat 0° and 90° from the rolling direction,
both with the SHB elements and with ABAQUS solidmeénts. Nevertheless, these predictions
could be improved in future work by adopting mopp@priate anisotropic non-quadratic yield
functions for aluminum alloys (see, e.g., [52, 58]), which are able to predict more than four

earing profiles for the complete circular blanko@iserved experimentally.
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Fig. 38. Predicted cup height profiles for the wgtical cup.

5 Conclusions

In this work, two quadratic prismatic and hexaheéddiid-shell elements denoted SHB15 and
SHB20, respectively, have been proposed for theetdimensional modeling of thin structures.
With regard to earlier developments, the formulatdd these elements has been extended in this
paper to the framework of large strains and aropitrplastic behavior. Based on a convenient
fully three-dimensional framework, with only traasbnal degrees of freedom and few through-
thickness integration points, these elements apfoedre very attractive, as they are able to
accurately reproduce shell-like behavior using anlsingle element layer. These resulting SHB
formulations have been implemented into the fiekement code ABAQUS/Standard with the
help of UEL subroutines. The present analysis rgdimtuses on large-strain applications using
fully three-dimensional anisotropic elasto-plastnstitutive equations.

The performance of the proposed SHB elements haa best evaluated on a series of
selective linear and nonlinear benchmark testseBoh benchmark problem, the results given by
the SHB elements have been compared with thosedegleby their ABAQUS counterparts,
including quadratic solid and shell elements, ai as with reference solutions taken from the
literature. For all benchmark tests, the numernieallts obtained with the SHB elements showed
excellent agreement with the available referenctutisns. Compared to state-of-the-art

ABAQUS shell elements, the performance of the Sknents is often comparable; however, in
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most numerical tests, ABAQUS quadratic solid eletséne., C3D15 and C3D20) require finer
meshes (in the plane and through the thicknegmadde accurate solutions.

Then, the SHB elements have been applied to thelaion of four challenging sheet metal
forming processes, in order to assess their capadiin modeling complex problems involving
large displacements and rotations, anisotropicelatgain plasticity and double-sided contact.
Overall, three popular deep drawing processes andneremental forming test have been
considered. Various comparisons between the simolagsults given by the SHB elements and
the experimental measurements revealed that thpogped solid—shell elements are able to
successfully model such complex forming processsing only a single element layer with few
through-thickness integration points. Furthermdne, SHB elements provided the closest results
to the experimental data, when compared to ABAQUW&daatic solid elements. It is worth
noting that the simulations of the sheet metal fogrprocesses investigated using ABAQUS
guadratic shell elements failed to converge, whiebheals that these shell elements are not
appropriate for handling double-sided contact ichstcomplex forming processes.

Overall, the proposed quadratic SHB elements shayeed capabilities in modeling various
types of structural problems, with coarse meshesf@an integration points through the thickness,
whereas conventional quadratic solid elements redufiner meshes to achieve accurate
solutions. Also, the SHB elements represent amasting alternative to traditional shell elements,
especially for the simulation of complex problemgadlving double-sided contact, which are very

common in sheet metal forming processes.
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