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ABSTRACT

This paper presents an original multi-level optimisation method for the design of composite structures
integrating a global-local approach based on higher-order theories to assess the responses of the struc-
ture at each scale. The method offers a good balance between accuracy and computational costs, Unlike
multi-level strategies available in the literature, in the proposed approach there is a strong interaction
between the steps of the optimisation process. The proposed method is articulated in two nested optimi-
sation loops (outer and inner). The outer loop focuses on the macroscopic scale where the polar formal-
ism is used to describe the laminate behaviour. The resolution of the outer loop is performed through a
special metaheuristic algorithm. However, since requirements on local structural responses are evaluated
on the most critical region of the structure (modelled through a higher-order theory) at the ply-level, for
each solution of the outer loop, a nested genetic optimisation (inner loop) is performed to find the stack
matching the values of the geometric variables and of the polar parameters corresponding to the current
solution of the outer loop. During the inner loop, the optimised stacking sequences are searched in the

domain of general quasi-trivial solutions, without introducing simplifying hypotheses.

The new methodology is applied to the least-weight design of a simplified wing-box structure by con-
sidering requirements of both mechanical nature (first buckling load, first-ply failure, and delamination)
and technological nature (blending between adjacent laminates).

1. Introduction

Fibre-reinforced composite materials are widely used in differ-
ent industrial fields thanks to their outstanding performances, e.g.,
high stiffness-to-weight and strength-to-weight ratios, which lead
to a substantial weight saving when compared to metallic alloys.
Moreover, nowadays, new classes of composite structures, like
variable-stiffness composite structures [1-5] or multi-material
structures |6,7], can be designed (through alternative approaches)
and fabricated thanks to modern additive manufacturing processes
for composite materials.

Nevertheless, the design of composite structures requires the
formulation of a complex multi-scale problem involving a huge
amount of design variables and a variety of phenomena interven-
ing at different scales [8]. In the case of multilayer plates (which
represent the main focus of this paper) the problem scales are, at
least, three: (1) the microscopic scale (that of the constitutive
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phases), (2) the mesoscopic scale (that of the constitutive lamina)
and (3) the macroscopic scale (that of the laminate).
Furthermore, the designer has to deal with design variables of
different nature depending on the considered scale. At the micro-
scopic scale, for instance, the design variable set includes the mate-
rial properties of constitutive phases (fibres, matrix, additives, etc.),
their volume fraction and the spatial distribution of each phase, i.e.,
the topology of the representative volume element. At the meso-
scopic scale, the design variables are the material properties, the
thickness and the orientation angle of the single lamina. At the
macroscopic scale, the composite is often modelled as an equiva-
lent homogeneous anisotropic medium whose mechanical beha-
viour is described in terms of a set of constitutive matrices,
which depend on the choice of the kinematic model. For instance,
in the framework of the classic laminate theory, two mathematical
representations of the anisotropy of multilayer structures at the
macroscopic scale can be found in the literature. The first one
makes use of the well-known lamination parameters (LPs) coupled
with the parameters of Tsai and Pagano, see [9-11]. These param-
eters unquestionably provide a compact representation of the stiff-
ness tensors of the laminate, although they are not all tensor
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invariants [11]. The second one is represented by the polar formal-
ism introduced by Verchery [12], and generalised to the case of
higher-order equivalent single layer theories by Montemurro
[13-15]. Thanks to the polar formalism it is possible to represent
any plane tensor by means of tensor invariants, referred to as polar
parameters (PPs), which are directly related to the symmetries of
the tensor.

Nevertheless, regardless of the formalism adopted to represent
the laminate anisotropy at the macroscopic scale, the design vari-
ables involved at different scales are related, and the relationship
among the problem scales is not bijective [9]. Moreover, depending
on the problem at hand, the design requirements are often defined
at different scales, and the coupling among scales, which can be
weak or strong, depends on the problem formulation too, thus, fur-
ther complicating the design of composite structures |[16]. The
development of a suitable design strategy taking into account the
above aspects is of paramount importance, although this task is
anything but trivial.

Many researchers have faced the challenge of developing suit-
able strategies and algorithms for the design of composite struc-
tures and the research is still ongoing. Specifically, the
formulation of the problem for searching the optimal stacking
sequences can also be decisive. The literature survey done by Ghi-
asi et al. [8] exhaustively summarises the possible optimisation
strategies (and the related problem formulation) by dividing them
into two categories: single-level optimisation strategies (also refer-
eed to as “direct approach”) and multi-level optimisation
strategies.

When adopting the first approach, the design problem is formu-
lated by directly employing the number, thickness and orientation
of plies as design variables. This approach allows for an easy imple-
mentation of many constraints and requirements. Nevertheless, it
presents some shortcomings. Firstly, the optimisation problem for-
mulated in the space of the plies orientations is highly non-convex
and prone to converge towards local minima. This is due to the
trigonometric functions involved in the definition of the stiffness
matrices of the laminate. Secondly, to reduce the complexity of
the solution search process, engineers systematically make use of
simplifying hypotheses and design guidelines to find feasible solu-
tions. In the literature, the most frequently used assumptions are
about the nature of the stacking sequence [17,18]. Researchers
usually make use of symmetric (a sufficient condition to ensure
membrane/bending uncoupling) balanced (a sufficient condition
to ensure a membrane orthotropic behaviour) stacks whose orien-
tation angles take values in the following “canonical set":
0°, +45°,90°. Together with the above simplifying hypotheses a
set of design rules [17,18] is often introduced when searching for
an optimum stack: percentage rule, contiguity rule, disorientation
rule, grouping rule, etc. These rules represent a sort of best practice

in designing conventional stacks, which are the result of the expe-
rience collected in the last 50 years in the aerospace sector.
Although such rules allow simplifying the design problem of a
composite structure, their systematic use has an important conse-
quence: the extent of the design space is extremely shrunk and the
number of potential optimal solutions is, thus, decreased. Finally,
the number of design variables is not generally known a priori
when optimising for lightness. Moreover, it is dramatically size-
dependent, which makes the approach not suitable for the design
of large structures [19,20]. The interested reader can find more
details on the direct approach in [8].

To alleviate the drawbacks of the direct approach, in the multi-
level optimisation strategies the design problem is split into two
linked sub-problems, each one focusing on a different scale. The
first-level problem (FLP) deals with the macroscopic scale and each
laminate composing the structure is modelled as an equivalent
homogeneous anisotropic medium. The design problem is solved
by optimising the geometric variables of the structure and the
parameters describing the macroscopic behaviour of the laminate,
i.e,, either the LPs or the PPs depending on the formalism adopted
to represent the laminate anisotropy at this scale. Of course, all the
requirements involved into the design problem should be taken
into account at this level via a suitable formulation of equivalent
constraints in the LPs space or in the PPs one (this task is anything
but trivial). The second-level problem (SLP) focuses on the lami-
nate mesoscopic scale and the goal is to recover at least one stack-
ing sequence matching the optimised mechanical properties
resulting from the FLP. The design variables of the SLP are the plies
orientation angles (and sometimes their thickness).

The vast majority of the studies dealing with multi-level opti-
misation strategies makes use of the representation of anisotropy
based on LPs. Diaconu et al. [ 21], provided the inequalities defining
the laminate feasibility domain in the LPs space. Many research
studies [17,18.22-30] took inspiration from this work and justify
the use of the multi-level optimisation approach on the basis of
the (presumed) convexity of the feasibility domain in the LPs
space. Nevertheless, as recently rigorously proven by Picchi Scar-
daoni and Montemurro [31], the laminate feasibility domain in
the LPs space (but also in the PPs space) is not convex for laminates
with identical plies (i.e., plies made of the same material and thick-
ness), thus, this argument cannot be used to justify the use of the
multi-level optimisation approach. Among the works mentioned
above, the one by Bramsiepe et al. [29] presented a multi-level
optimisation approach based on LPs for the least-weight design
problem of a lifting system structure made of symmetric laminates
by considering design requirements on blending, buckling and fail-
ure constraints. The reader is addressed to the review article [32]
to find further interesting works on multi-level optimisation
strategies using LPs.



The multi-level optimisation approach based on the polar for-
malism is often referred to as multi-scale two-level optimisation
strategy (MS2LOS). It has been originally introduced in [33,34]
and has been later generalised, expanded and used in several
works, like [35-42]. The MS2LOS based on the polar formalism is
characterised by some interesting features (corresponding to just
as many advantages): a general problem formulation (for both
FLP and SLP), the absence of simplifying hypotheses on the nature
of the stacking sequences, and the use of PPs to optimise locally the
elastic symmetries of the characteristic tensors of the laminate (in
terms of both stiffness and strength).

It is noteworthy that the blending requirement (also known as
ply-drop requirement) is a manufacturing constraint dealing with
the continuity of the ply orientation angles between adjacent com-
posite laminates having different thickness. This continuity is
essential for the correct junction of laminates having different
number of layers. If the formulation of this constraint is immediate
and intuitive when the design problem is stated in the space of the
layers orientations, this is not true when considering the multi-
level approach based on PPs (or, equivalently, the one based on
LPs). Specifically, a first formulation of the blending requirement
in the PPs space, i.e, regardless of the nature of the stacking
sequences of the laminates with different thickness composing
the structure, has been introduced in [39], whilst a narrower for-
mulation of the blending constraints has been recently presented
in [42]. The latter formulation has been used in this paper.

From a general perspective, the main advantages of the multi-
level design approaches (both LPs-based and PPs-based) are essen-
tially two. Firstly, the number of design variables involved in the
problem formulation is drastically lower than the one characteris-
ing the direct approach. Secondly, the non-convexity characteris-
ing the constrained non-linear programming problem (CNLPP) of
the FLP is strongly relaxed during the first step (but the feasibility
domain of the laminate is still non-convex). As far as the disadvan-
tages are concerned, provided that the splitting of the design prob-
lem in FLP and SLP is possible, one of the main issues is to correctly
formulate design requirements that intervene at lower scales, like
manufacturability constraints and constraints related to the failure
of the material, in terms of equivalent constraints to be imposed on
the macroscopic design variables involved in the first step. When
these conditions are not met, the characteristic scales of the prob-
lem cannot be considered as separated and the decomposition of
the design problem in FLP and SLP is no longer possible, thus a dif-
ferent approach must be adopted. In such cases, since different
physical phenomena occur at multiple scales a sound approach
to correctly design composite structures consists in using dedi-
cated global-local (GL) modelling strategies within the optimisa-
tion process. GL modelling strategies are generally used when a
good balance between accuracy in the assessment of structural
responses and low computational effort is sought. Indeed, struc-
tural responses involved at lower scales (typically the lamina-
level) require refined models, which, however, increase the com-
putational costs.

In the following of this section the focus is put only on the GL
modelling strategies developed for the analysis of thin-walled
structures typically used in the aerospace field. Indeed, the design
and analysis of such structures require a detailed evaluation of the
stress field. Nevertheless, the complexity of large structures and
the use of composite materials significantly increases the compu-
tational costs of the numerical models. Typical finite element
(FE) models of aircraft structures in the preliminary design phase
are characterised by the combination of 1D and 2D elements,
which are appropriately selected to simulate stringers, panels, ribs
and other components. This discretisation is, obviously, a simplifi-
cation of reality, but it is necessary because it allows the designer

to have an idea of the distribution of stresses in the structure,
although they are affected by the simplifying assumptions at the
basis of the classical theories associated with the 1D/2D elements
used by commercial software. However, 3D stress fields should be
taken into account when geometric discontinuities of the structure
are present, e.g., holes, joints and free edges and, above all, if com-
posite materials are used. To accurately capture these localised 3D
stress fields, the classic theories and kinematic models cannot be
used for this task and solid models or high-order theories are often
necessary. However, using a full 3D FE model or a FE model com-
posed of elements based on high-order kinematic models for a
large-size structure is prohibitive in terms of computational effort.

To make the model more efficient, i.e, to find a good balance
between computational costs and results accuracy, three main
classes of GL modelling are often employed in the literature. The
first class of GL modelling strategies is based on a mesh refinement
or the shape functions modification within the critical regions of
the structure [43-45], The second class makes use of multi-
model methods, wherein different subregions of the structure are
analysed with different mathematical models [46-52]. The third
class is based on the use of the static condensation technique, also
known as “super-elements method" |53/, to alleviate the computa-
tional effort.

Among the few works making use of a GL modelling strategy in
the framework of an optimisation process, one can find the work
by Arrieta and Stritz [54], who proposed a GL modelling strategy
dedicated to damage tolerance analyses of the structural compo-
nents of a conventional wing. Of course, this type of analyses
requires a refined model of structural components to simulate
cracks onset and growth. An alternative approach is presented in
[55]. However, the global model does not take stringers and
spar-caps into account, since stiffened panels are modelled as
equivalent shells. In [56], a GL approach for a high-speed wing is
presented. The main limitation of this study is about the remap-
ping of the local models over rectangular plane stiffened plates,
loosing in this way the effect of geometrical details on the buckling
strength of the structure. Furthermore, in [56], several constraints
are evaluated using simplified analytic formul&. Liu et al. [57] pre-
sented a GL modelling approach for the optimisation of curvilinear
spars and ribs (SpaRibs). The problem formulation presents a major
issue: the procedure needs a significant computational effort (hun-
dreds of cores) to find solutions in acceptable time, loosing in this
way the interest behind the GL modelling approach.

Recently, some efforts to formalise and include a GL modelling
approach based on the sub-modelling technique into the MS2LOS to
design large-size composite structures have been carried out by
considering both meta-heuristic algorithms[39,40,58-60] and
deterministic ones [41,61). Nevertheless, in all these works, the
scales have been considered as separated and the design problem
has been split in FLP and SLP according to the classic MS2LOS.
The structural responses evaluated at the lower scales have been
integrated in the formulation of the FLP through equivalent (con-
servative) constraints on the PPs of the laminates constituting
the structure. However, such an approach, although computation-
ally efficient, leads, sometimes, to conservative solutions that can
be still improved, especially when the lightness is the driving cri-
terion of the optimisation process (which is the case for large-
size aerospace structures).

To this end, in this work, a modified version of the MS2LOS is
proposed and its effectiveness is proven on a simplified wing-box
model made of composite materials taken from [39]. The aim is
to integrate the global-local approach based on the Carrera's Uni-
fied Formulation (CUF) presented in [62] into the MS2LOS. The
problem is formulated in terms of the least-weight design of the
composite wing-box structure subject to design requirements



related to blending, buckling and first-ply failure. This last require-
ment is verified by using the global-local modelling approach
involving a local layer-wise model based on CUF higher-order
beam theories. The critical zone of interest (ZOI) of the wing-box
is identified by means of the tensorial laminate-level failure crite-
rion presented in [63,3). To achieve this task and find an optimal
configurations meeting the design requirements at all scales, the
work-flow of the MS2L0OS has been modified in order to integrate
the global-local modelling approach based on CUF and to deter-
mine feasible stacking sequences satisfying the requirements of
the problem at hand. Particularly, in the framework of the pro-
posed optimisation strategy, there is no longer a clear distinction
between FLP and SLP, but the two phases of the MS2LOS strongly
interact during the optimisation process. More precisely, at the
macroscopic scale the laminate behaviour is still described through
the use of PPs, which constitute (together with the geometrical
parameters) the design variables of the FLP. The solution search
of the FLP is carried out through the EvolutionaRy Algorithm for
optimiSation of ModUlar Systems (ERASMUS), a special GA devel-
oped by Montemurro |16]. However, since requirements on the
first-ply failure index and on the delamination are introduced in
the problem formulation and since the most critical ZOI is mod-
elled through a layer-wise FE model, for each individual represent-
ing the potential solution of the FLP, a nested genetic optimisation
is carried out to find the optimal stack matching the values of the
PPs corresponding to this individual and satisfying the require-
ment on the first-ply failure and delamination at the lower scale.
In this context, the optimal stacking sequence, for each individual
of the FLP, is searched in the domain of general quasi-trivial (QT)
solutions [64,65] without introducing simplifying hypotheses on
the stack nature.

The reminder of the paper is as follows. The fundamentals of the
polar method are briefly recalled in Section 2 for both stiffness and
strength properties, whilst the fundamentals of the CUF are briefly
introduced in Section 3. The problem description and the general
work-flow of the design procedure are presented in Section 4.
The mathematical formulation of the optimisation problem and
the numerical strategy are detailed in Section 5. The global FE
model of the simplified wing-box and the local 1D CUF model of
the ZOI are described in Section 6, while the numerical results
are discussed in Section 7. Finally, Section 8 is devoted to conclud-
ing remarks and prospects.

Notation. Upper-case bold letters and symbols are used to indi-
cate tensors and matrices, while lower-case bold letters and sym-
bols indicate column vectors.

2. Fundamentals of the polar method

In this section, the fundamentals of the polar method applied to
laminates stiffness and strength matrices are briefly recalled; for a
deeper insight in the matter, the reader is addressed to previous
works [13,14,63,66].

The polar method, introduced by Verchery [12], allows express-
ing any n-rank plane tensor through a set of tensor invariants,
which can be related to specific values of the PPs. In the context
of this work, two types of tensors are relevant: second-rank sym-
metric plane tensors Z; (with ij=1.2) and fourth-rank
elasticity-like (i.e., having both major and minor symmetries)
plane tensors Ly, (with i.j. k.l = 1.2). They can be expressed in
terms of their PPs as:

Zy = 4T +4Rcos20,
Zy; = +Rsin2®. (1
Zyv = +T —Rcos2d,

and

Liyn = +Tg +2T, +Rpcosdd, 4R, cos2d,.

Lz = —Ta +2T, —Rpcosd4dy,

Ltz = +Rpsindd,  +2R, sin2d,, 2)
Lyza = +Ta +2T; +Rpcosd4®; —4R, cos2®,.

Loy = —Rpsindd,  +2R sin2dy,

Lz = +To —Rpcos4®d,.

InEqgs.(1)and (2),T. Ty and T, are the isotropic moduli, R. R, and R,
are the anisotropic ones, while ®. @, and @, are the polar angles.
Among them T.R and Ty.T;.Ry.R;.®y — @, are tensor invariants,
while @ and one of the two polar angles, @, or @, can be arbitrarily
chosen to set the reference frame, for second and fourth rank ten-
sors, respectively,

One of the main advantages of the polar formalism is that
requirement on elastic symmetries of the tensor can be translated
into simple algebraic conditions on the related PPs. For example,
the ordinary orthotropy of a fourth-rank elasticity-like tensor cor-
responds to the condition:

d)o - d)| = Kﬂ‘,"4. [3]

with K =0 and K = 1, corresponding to the so-called low shear
modulus and high shear modulus orthotropy, respectively. More
details about the elastic symmetries and their expression in terms
of PPs can be found in [66].

2.1. Polar parameters of the laminate stiffness matrices

In the framework of the first-order shear deformation theory
(FSDT) |67] the constitutive law of the laminate (expressed within
the local frame I', = {0:x,.¥,.2,}) can be stated as:

r=K,né (4)

where r and & are the vectors of the generalised forces per unit
length and the strains of the laminate middle plane, respectively,
whilst Ky, is the laminate stiffness matrix (in Voigt's notation). In
this framework, the analytical form of these arrays is:

n A B 0 &
r=<m; K,:= D 0. &8:=4¢ % ¢ (5)
q sym H Yo

In Eq. (5), A.B and D are the membrane, membrane/bending cou-
pling and bending stiffness matrices of the laminate, while H is
the out-of-plane shear stiffness matrix. n.m and q are the vectors
of membrane forces, bending moments and shear forces per unit
length, respectively, whilst £.x, and y, are the vectors of in-
plane strains, curvatures and out-of-plane shear strains of the lam-
inate middle plane, respectively. In order to analyse the elastic
response of the multilayer plate, it is useful to introduce the lami-
nate normalised stiffness matrices:
.1 . 2 .12 o1

A ._?A. B ._t—zB. D '_tTD' H ._?H. (6)
where t is the total thickness of the laminate.

As deeply discussed by Montemurro [13,14], A", B, D" behave
like tensor L of Eq. (2) and H" behaves like tensor Z of Eq. (1), there-
fore it is possible to express the Cartesian components of these
matrices in terms of PPs, for an overall number of 21 parameters.
It can be proven that, if the elastic properties of the constitutive
ply (i.e., matrices Q™ and Q™" and their PPs, listed in Table 1)
are known and the hypothesis of fully orthotropic quasi-
homogeneous laminate is introduced, i.e.,

A=D.B =0 @ - =K" n/4 (7)



the overall number of independent PPs reduces to only three: the
anisotropic polar moduli RS, := (1) R} and R}, which describe
the type of the orthotropy of matrix A’, and the polar angle @,
which represents the orientation of the main orthotropy axis of

matrix A'. More details on the polar formalism and its application
in the context of the FSDT are available in [13,14].

2.2, Polar parameters of the laminate strength matrices

For the assessment of failure at the laminate level, the general
laminate-level failure criterion (FC) formulation introduced by Cat-
apano and Montemurro |63] is here employed. This criterion rep-
resents a general wunified formula including various
phenomenological failure criteria. Particularly, the laminate-level
failure will be described through the Tsai-Wu (TW) FC. It is well-
known that the ply-level TW FC [68] can be written in matrix nota-
tion as

Frw:=6'Fo+a6'f < 1, (8)

where & is the stress vector in Voigt's notation, while F and f
depend on the lamina strength properties [68]. In agreement with
Khani et al. [69], the stress dependent term F,;, is assumed equal to

-1
VXYY
where X, Y, (# = c.t) are the limit stresses along x and y axes,
respectively, listed in Table 1, By introducing the FSDT hypothesis
of null out-of-plane normal stress, by separating the in-plane and
out-of-plane contributions, by using the Hooke's law and by

exploiting the FSDT kinematics, Eq. (8) can be rewritten for each
layer k in terms of the laminate middle plane strains

Fiz 9)

Fiw(2) = &lGl'e + 22 YIGl' 1, + 228G 1,
+Y0Gy Yo + BBY + 2208 < 1,

where the matrices G,'.G]"" and the vector g depend on the
strength properties of the ply (listed in Table 1) and on the orienta-
tion of the k-th layer.

The laminate failure index (LF1) is calculated by averaging Eq.
(10) through the thickness t of the laminate as:

(10)

Eq. (11) simplifies to:

Fri =1 (83Gago + 15Goio + #5Gs o
+75GH Yo + 18 + XoBo)-

Matrices Gx.Gs. Gp and Gy and vectors g, and g, represent the lam-

inate strength matrices and vectors. In particular, the four matrices

can be seen as the strength counterpart of stiffness matrices A, B.D,

and H. The laminate normalised strength matrices and vectors can
be defined as follows:

(12)

G, = 1G,. G[,:‘Z;GB. G;,=}}Gp. G, = 1Gy. (13)
g =18 &=5%
Finally, by defining
G, G 0 -9
Gum = Gy 0. 8uw=4% ;. (14)
sym Gy 0
a compact version of Eq. (12) can be obtained:
G
lam __ T Vlam Tgﬂ
Fry =& te+a " (15)

To use the LFl, a suitable threshold value F,;, must be introduced,
such that, when failure occurs

Fi = Fy. (16)

A thorough discussion about the choice of Fr;,, which is not the main
scope of this work, is reported in [4].

Of course, the arrays of Eq. (14) can be expressed in terms of
PPs. Catapano and Montemurro [63] showed that, when the
strength properties of the constitutive ply (i.e., matrices G" and
G™" and vector g, and their PPs, listed in Table 1) are known,
the laminate strength matrices and vectors can be expressed in
terms of the PPs of the laminate stiffness matrices introduced in
Section 2.1. This means that the PPs describing the laminate stiff-
ness and strength matrices and vectors are not independent.
Accordingly, it suffices to include among the problem design vari-
ables only one of these two sets of PPs. When a fully-orthotropic
quasi-homogeneous laminate is considered, the overall number
of independent PPs describing its behaviour (in terms of both stiff-

12
Fam — % / , Fi(z)dz. (1) ness and 'strengtt.)] is still equal to thre'e: the anisotropic polar
Jouz moduli RY, and R} and the polar angle @}  of matrix A" or, alterna-
Table 1
Mechanical properties of the T300/5208 carbon-epoxy pre-preg used in this study.
Technical constants PPsof Q,° PPs of Q"
Ey [MPa) 1420000 To [MPa) 220400 T |MPaj 52720
Ex [MPa) 103000 Ty [MPa| 198380 R [MPa] 19280
Gy2 [MPa) 72000 Ro [MPa] 14840.0 @ [deg] 90.0
Viz 027 Ry [MPa) 16550.0
vas 042 @, [deg] 0.0
©, [deg] 0.0
Engineering strengths PPs of G' PPs of Gy and g,
X, [MPa] 22800 'y [MPa] 7077.0 I" [MPa] 8637
X. [MPa] 14400 Iy [MPa] 13120 A [MPa] 1647.0
Y, [MPa| 57.0 Ao [MPa) 3206.0 Q [deg| 90.0
Y. [MPa] 2280 Ay [MPa) 405.0
Z. [MPa| 57.0 Q, |deg] 450 1 [MPa) 68.0
S23 [MPa| 400 Q, |deg| 900  [MPa 68.0
S12 = Si3 [MPa) 710 0 [MPa) 90.0
Thickness: fuy = 0127 [mm]
Density: Porg = 1578 2 10°° [kg/mm’]

* In-plane reduced stiffness matrix.

" Qut-of-plane shear stiffness matrix.
© In-plane reduced strength matrix.

4 Qut-of-plane strength matrix.

© In-plane strength vector,



tively, their counterpart of matrix G,. More details on the represen-
tation of the strength matrices of the laminate through the polar
formalism and on the correlation between the PPs of strength
and stiffness matrices of the laminate can be found in [63].

3. 1D finite element model based on the unified formulation

In this section, the fundamentals of the Carrera’s unified formu-
lation (CUF) are briefly recalled for beam-like structures for a fruit-
ful understanding of the global/local modelling strategy described
in Section 6. For a deeper insight in the matter, the reader is
addressed to | 70]. Consider a generic beam whose longitudinal axis
coincides with the y axis and its cross-section lies on the xz-plane,
as shown in Fig. 1. Let uT(x,y,2) = {u,(x,¥.2), uy(x.y.2). u:(x.y.2) }
be the displacement vector at the generic point of the beam. The
cross-section of the structure is denoted by £, and the coordinate
y along the beam axis takes value in the interval (0. L|. In the fol-
lowing, the strain tensor £ and the stress tensor ¢ are expressed
according to the Voigt's notation. In the case of small displace-
ments, the strain - displacement relationship can be written in
compact form as:

&= 9u, (17)

where « is the linear differential operator. The stress tensor compo-
nents can be assessed through the Hooke's law:

a = Ce, (18)

where C is the stiffness matrix of the material. For the sake of brev-
ity, matrices & and C are not reported here, but their expression can
be found in [70]. In the framework of the CUF [ 70|, the displacement
field over the cross-section can be expressed as follows:

T=12..... M. (19)

where each function F, varies over the cross-section, u, is the gen-
eralised displacement vector and M stands for the number of terms
of the expansion (note that the repeated subscript 7 indicates sum-
mation). Of course, the choice of F; determines the class of the 1D
CUF model. In this paper, F, are Lagrange Expansions (LE) which
are based on the use of Lagrange polynomials as generic functions
to describe the displacement field variation over the cross-section.
The cross-section is divided into local expansion sub-domains,
whose polynomial degree depends on the type of LE employed.
Three-node linear L3, four-node bilinear L4, nine-node cubic L9,
and sixteen-node quartic L16 polynomials can be used to formulate
refined beam theories [70]. Of course, LE allows for taking into
account arbitrary section geometries. The locations of the points
belonging to a generic L9 sub-domain, in terms of natural coordi-
nates, are listed in Table 2. In the case of an L9 element, the inter-
polation functions are given by:

Foo=4(o® + oot ) (% + pf;). 7=1.3.5.7.
Fo=3B2(B* + BB (1 — o) + Jo2 (o + oo ) (1 — 7).
Fr=(1-e2)(1-p%), =9,

ux.y.z) = Fi(x.z)u.(y).

T=2.46.8.

Fig. 1. Coordinate frame of the beam model.

where 2, fi € [-1, 1]. In the case of L9 polynomials, the displace-
ment field reads:

Uy = Fylty + Fattyy + Fyllyg + Fllyg + Fsllys + Fgllg + Fallyy + Fglig + Follgg,
u, = F]l‘,-l + quyz + F;u,, + F.,u,., + F;l‘yy, + FGU,G + F',!U,--,! + F;l‘yg + FgUyg.
u; = Fyuy + Faug + F3ug + FaUg + Fsus + Fgltyg + Fug + Fguz + Falyg.

Refined beam models can be obtained by adopting high-order
Lagrange polynomials or by using a combination of Lagrange poly-
nomials on multi-domain cross-sections. More details about high-
order models based on LE can be found in [70,71].

Thanks to the multi-domain nature of the LE-based models,
layer - wise models can be implemented straightforwardly by con-
sidering one or more local expansions for each layer of the compos-
ite structure. Of course, the beam is meshed along the y-axis
according to the classical FE method. Particularly, the generalised
displacement vector u.(y) is approximated through classic shape
functions N;(y) as follows:

u(x.y.z) = Ni(y)F:(x.2)u;.
(20

where N,(y) is the i-th shape function, n, is the number of nodes in
one element and u; is the vector of nodal unknowns. For the sake of
brevity, the shape functions are not reported here, but can be found
in classical books, like [43]. Elements with four nodes (B4) are
adopted in this work, in this way a cubic approximation along the
y-axis is assumed. The correspondent virtual variation of the dis-
placement can be written as:

ou(x.y.z) = Nj(y)F.(x.z)ou.
(21)

The governing equations are derived by applying the principle of
virtual displacements (PVD). For a static problem:

Line = Olext, (22)

where 6L;, is the virtual variation of the internal work, 4L, is the
virtual variation of work done by the external loads. The virtual
variation of the internal work can be expressed as:

oL = / ie'adv. (23)
Jv

By using Eqgs. (17), (18) and (20) the previous expression simplifies
to:

(sLi," = (5ll!rsKW§l.l,t . (24}

where V = QL is the volume of the beam and K™ is the stiffness
matrix in the form of a 3 » 3 fundamental nucleus (FN). The deriva-
tion of the FN can be found in [71]. It is noteworthy that the formal
expression of the components of the FN of the stiffness matrix does
not depend on the choice of the cross-sectional functions F., which
are related to the theoretical model at the basis of the element.
Moreover, it is not influenced by the choice of the shape functions
N;, which determine the numerical accuracy of the FE model
approximation, This means that any classical or high-order beam
element can be automatically formulated by opportunely expand-
ing the FN according to the indices t.s.i, and j. The formal expres-
sion of the load vector coherent to the considered model and
theory can be found in [70].

4. Problem Description
4.1. The benchmark structure

The benchmark structure considered here is a simplified wing-
box model made of composite laminates. The geometry of the



Table 2
Natural coordinates of the points belonging to an L9 cross-section element.

Point e By
1 1 1
2 0 1
3 +1 -1
4 +1 1]
5 1 +1
6 0 +1
7 -1 +1
8 -1 0
9 0 0

structure, taken from [39], the boundary conditions (BCs) and the
applied loads are illustrated in Fig. 2. The wing-box has a length
L = 3543 mm, a width W = 2240 mm and a height H = 381 mm.
The wing-box is clamped at x = 0 and four concentrated forces
are applied at nodes located at (x, y, z) = (L. i%. ¥).i=0.3. The
magnitudes of the forces are F; =360.04 N, F, =75155 N,
F; =751.55 N and F; = 1520.70 N.

In the simplified wing-box, ribs, spars and stringers are replaced
by continuous equally spaced composite plates with a pre-defined
stacking sequence, i.e., [45°y,];. All laminates are made of T300/
N5208 graphite-epoxy pre-preg lamin@ whose mechanical prop-
erties are reported in Table 1.

In this study, only dorsal and ventral panels are optimised. Con-
versely, the laminates constituting ribs, spars and stringers are
kept unchanged during the optimisation process. For the sake of
clarity, Fig. 3 shows the design and non-design regions of the wing
box. The design region consists of six panels: three belonging to the
dorsal region and three belonging to the ventral one. Moreover, the
following hypothesis is introduced on the macroscopic behaviour
of each panel composing the design region: it behaves as a fully
orthotropic quasi-homogeneous laminate, for which Eq. (7] holds.

Ux =y “uz =0

=fy=B;=
\\\\\\\\\\\\\\ |
) §\ \\\\ \\\\\\\\
§ e \\\\ \\\\\\\\ )
™ o~ \F’l F: (4
A = |
~
- ————¢ — -9
y

: w

Fig. 2. Geometry and BCs of the simplified wing-box taken from [39).

[ Design Region
I Non-Design Region

T Panell
T Pamel2
Tee Pamel3 T

Fig. 3. Design and non-design regions of the wing-box structure.

Two types of FE models will be used during the optimisation
process: (i) the global finite element model (GFEM) wherein the
mechanical response of each laminate belonging to the design
region is described in terms of PPs (in the FSDT framework) regard-
less of the stacking sequence nature; (ii) the local finite element
model (LFEM), made of 1D high-order four-node beam elements
(B4) belonging to the LE class (layer-wise kinematics), which is
generated only for the most critical ZOI within the design region
[72]. Particularly, as illustrated in Fig. 4, each panel of the design
region is split into three sub-panels to check the design require-
ments related to the LFEM generated for the most critical ZOI. All
the results presented in this study are compared to the ones
obtained for a reference configuration of the wing-box. More pre-
cisely, the design region of the reference solution is composed of
quasi-homogeneous isotropic laminates with a number of plies
equal to 20: the total mass of the reference solution is, thus,
M, = 261 kg

4.2 The standard multi-scale two-level optimisation strategy

In the context of the classical MS2LOS based on PPs, introduced
in [33.34] and used in different real-world engineering problems
[1-5,37-42,61,73], the optimisation problem is split into the fol-
lowing two distinct (but related) optimisation problems.

o First-level problem (FLP). The aim of this phase (which focuses
on the macroscopic scale) is the determination of the optimal
value of both PPs and geometric parameters of the laminates
composing the structure to satisfy the requirements of the
problem at hand, which is formulated as a constrained non-
linear programming problem (CNLPP). At this level, each lami-
nate is modelled as an equivalent homogeneous anisotropic
plate whose behaviour is described in terms of the laminate
PPs (see Section 2). The CNLPP formulation can include design
requirements of different nature, e.g., stiffness, buckling factor,
eigen-frequencies, technological constraints, etc., formulated in
the space of the PPs and of the geometric variables of the com-
posite structure. As discussed in the works available in the liter-
ature on this topic, the FLP can be solved either by means of a
deterministic algorithm [1.4,5,41.42.61] (in this case the analyt-
ical form of the gradient of each design requirement must be
provided to speed-up the calculation) or through a metaheuris-
tic algorithm [2,3,38,37,39,40,73].

« Second-level problem (SLP). The SLP, which is formulated at
the laminate mesoscopic scale (i.e, the ply-level), is devoted
to the determination of a suitable lay-up matching the optimum
values of the PPs resulting from the FLP. In the case of constant
stiffness composite structures, the design variables are the ori-
entation angles of the layers [33,34,37], whilst in the case of the
variable stiffness composite structures, the unknowns are the

Panel-4 o—— (10) (13) @
Panel-5 °—>
Panel-6 mm

Panel-1 o—— @ @ (7)
Panel-2 o—»

Panel-3  o——

Fig. 4. Sub-panels composing the design region of the wing-box.



parameters describing the fibres-paths within each lamina
[2,3,73]. The SLP is usually formulated as an unconstrained
non-linear programming problem (UNLPP) [34].

4.3. The modified multi-scale two-level optimisation strategy

The aim of this study is to integrate the global-local modelling
approach based, on the one hand, on a standard FE code to gener-
ate the GFEM (to assess the global structural responses) and, on the
other hand, on high-order layer-wise beam theories in the frame-
work of CUF (to assess local design requirements) in the MS2LOS
for composite structures. As discussed in the following, the overall
structure of the MS2LOS must be properly modified to achieve this
task.

The main reason is to accurately assess the local structural
responses through the use of high-order theories to better charac-
terise the mechanical behaviour of the most critical ZOI of the FE
model overcoming, thus, the limitations of the FSDT on which
the GFEM relies. The work-flow of the modified MS2LOS is illus-
trated in Fig. 5.

Regarding the benchmark structure illustrated in Fig. 2, the goal
is to minimise the mass of the structure subject to the following
design requirements: buckling factor (evaluated through the
GFEM), feasibility constraints on PPs of the laminates composing
the wing-box, blending constraints between adjacent panels
[39,41], first-ply failure on the most critical ZOI (evaluated through
the LFEM).

As illustrated in Fig. 5, the modified architecture of the MS2LOS
is composed of two nested optimisation loops. The solution search
for both loops is performed through the GA ERASMUS [16]. The
outer loop represents the structural optimisation, ie., the FLP,
where both GFEM (built within ANSYS”) and LFEM (generated
within the CUF framework) are interfaced with ERASMUS. The
inner loop represents the lay-up design of the SLP (this step is fully
analytical, see Section 5), which is performed only for the most
critical ZOI of the design region of the wing-box (the stacking
sequences related to the other panels can be determined through
the efficient and general strategy discussed in [42]). Specifically,
during the outer loop, for each individual of each population, ERAS-
MUS passes the vector of design variables x,, (see Section 5 for
more details) to the GFEM, which is invoked to assess the mass
of the wing-box, the first buckling factor, the blending constraints
according to the formulation proposed in [42], and the LFI accord-
ing to the formulation proposed by Catapano and Montemurro
[3,63]. The LFI is then used to identify the most critical ZOl among
the sub-panels constituting the design region of the wing-box, as
shown in Fig. 4. It is noteworthy that the GFEM is generated by
considering the definition of the laminates (constituting the
wing-box) based on the PPs in the FSDT framework (thus the stack-
ing sequence is not defined within the GFEM). Once the most crit-
ical panel of the wing-box is identified, the SLP is resolved on-the-
fly to find, at least, one optimal stack meeting the current value of
PPs and thickness (included in the vector of design variables x,,, )
for the selected ZOI. It must be noticed that the stacking sequences
solutions of the SLP are searched in the space of quasi-trivial (QT)
solutions, as discussed in Section 5. Once the near-optimal stack is
found, it is passed to the LFEM based on layer-wise high-order
beam theories to assess the ply failure index (the CUF environment
is invoked to achieve this task). Finally, all requirements (from
both GFEM and LFEM) are passed to ERASMUS (outer loop) to per-
form the genetic operations (selection, crossover, mutation, penal-
isation, elitism, etc.) until the convergence criterion is met.

According to the work-flow shown in Fig. 5, from an optimisa-
tion standpoint, there is a strong coupling between the two loops:
the solution of the inner loop (the stack of the ZOI) depends on the
current values of the design variables of the outer loop (i.e., PPs and

thickness), whilst the solution of the outer loop implicitly depends
upon the solution of the inner loop because the requirement on the
first-ply failure is introduced in the problem formulation of the
outer loop and is checked on the stacking sequence of the ZOI by
means of a refined FE model based on high-order beam theories.

5. Problem formulation

This Section is devoted to the description of the problem formu-
lation by highlighting the main features (design variables, objec-
tive function, optimisation constraints) of both outer and inner
loops of the process illustrated in Fig. 5.

5.1. Design variables of the outer optimisation loop

The outer optimisation loop focuses on the structural optimisa-
tion by considering the structural responses assessed through both
GFEM and LFEM. Inasmuch as the local response of the structure,
assessed by means of the LFEM, depends upon the macroscopic
behaviour of the most critical ZOI extracted from the GFEM (this
task is done via the evaluation of the LFI, as discussed in the follow-
ing), and since the elastic and strength behaviours of the laminates
composing the GFEM are described in the PPs space (38,40, the
design variables of the outer loop are the laminate PPs R}, R}

and @} and two geometric parameters, i.e., overall thickness t
and number of saturated groups n, of the QT solutions, as dis-
cussed in the following.

For optimisation purposes, it is useful to consider the dimen-
sionless quantities defined as follows:
n:=L. [)D:=ﬁ. ” :=RA—'. N :=£’:. (25)
tory Ry Ry /2
where n is the number of layers, t;, is the thickness of the lamina,
whilst Ry and R, are the PPs of the in-plane reduced stiffness matrix
of the ply listed in Table 1, Particularly, the laminates composing
the design region of the wing-box are quasi-homogeneous and
fully-orthotropic (both membrane and bending stiffness tensors).
Accordingly, as discussed in Section 2, in the FSDT framework, the
macroscopic response of a quasi-homogeneous orthotropic lami-
nate is uniquely described by three dimensionless PPs: p,.p,.d,.
Moreover, the main direction of the orthotropy axis is assumed
aligned with the x-axis of the wing-bow structure (see Fig. 2):
accordingly, ¢, = 0 for each panel.

In order to ensure that a feasible stacking sequence, matching
the optimal PPs resulting from the FLP, could be found as a result
of the SLP, the geometrical feasibility conditions proposed by Van-
nucci [ 74] must be considered in the FLP. For a quasi-homogeneous
orthotropic laminate, these constraints read':

~1T<p, <1,
0<p, <1, (26)
2(p,)* -1-pg 0.

In previous works dealing with optimisation of composite struc-
tures making use of PPs [1,2,38,40.41,73,75.76], the above condi-
tions were introduced as explicit constraints into the FLP
formulation of the standard MS2LOS. Unlike the aforementioned
works, the variable change proposed by 1zzi et al. [4] is used here
to avoid the introduction of the feasibility constraint on the PPs,
i.e., the third formula in Eq. (26), within the problem formulation.

' These conditions describe the convex-hull of the true feasibility demain, as

recently discussed by Picchi Scardaoni and Montemurro in [31], and are valid under
the hypothesis that the laminate is composed of a sufficient number of plies, whose
orientation angles can get value in a sufficiently big and scattered set.
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Fig. 5. Work-flow of the modified MS2LOS.

This approach consists of remapping the feasible domain of PPs
identified by Eq. (26) over the unit square [0.1] x [0.1] through
the following variables change:

P11 .=
oy = Api 1)’ o = Py (27)
whose converse relations are
Po=1+20 (22 1), p, = o. (28)

In this way, all the combinations of o, and =, automatically satisfy
the feasibility conditions of Eq. (26), without the need of introduc-
ing explicit constraints into the problem formulation.

Two geometric parameters complete the set of design variables
of the outer optimisation loop: the number of layers n and the
number of saturated groups n, for all the panels of the design
regions. The number of layers n is needed to calculate the overall
thickness of the laminate t according to Eq. (25), whilst the number
of saturated group ny, is used within the inner optimisation loop
(i.e., the on-the-fly resolution of the SLP for the most critical ZOI)
to correctly select the family of QT solutions within the database
generated via the algorithm described in [64]. Indeed, as explained
in [64], the number of QT stacks depends upon the combination of
nand n,.

The design variables of the outer optimisation loop are, thus,
collected in the following vector:

Xhyr == (%oi, 2i. My, M), E=1,...,m, (29)

where n, represents the number of panels composing the design
region of Fig. 3; accordingly, the overall number of design variables
of the outer loop is ny, = 4n, (n, = 6 in this work).

5.2. Design variables of the inner optimisation loop

As discussed above, the inner optimisation loop, shown in Fig. 5,
consists in solving on-the-fly the SLP by searching the solution in
the database of QT stacks [64]. As discussed in [64], QT stacks
are closed-form solutions that satisfy the requirements of mem-
brane/bending uncoupling and homogeneity (membrane and
bending normalised stiffness tensors are equal), regardless of the
values of the orientation angles of the layers. Therefore, by means
of a dedicated algorithm |64/, it is possible to generate the data-
base of QT solutions for a given pair of number of layers n and
number of saturated groups n,. This database was already available
at the 12M laboratory as a result of the work by Garulli et al. [64].

Inasmuch as the number of QT solutions ngr depends on the
couple n. ng, i.e., ngr = ngr(n.ng) it is useful to introduce a design
variable related to the identifier IDgyy (i.e., an integer) that varies
in the range [1. ngr(n.n;)], which uniquely identifies the solution
within the database for a given pair of number of layers and num-
ber of saturated groups. Moreover, the orientation angle associated
to each saturated group, i.e., 0. k=1,..., N, is also included within
the design variables vector of the inner loop that reads:

X!, o= (IDgr. Oy..... 0,,).- (30)

For a deeper insight in the properties of QT stacks, the reader is
addressed to [64].

5.3. Objective function of the inner optimisation loop

The aim of the inner optimisation loop is the lay-up design of
each laminate belonging to the design region of the benchmark



structure. The goal is to determine at least one stacking sequence
satisfying the values of both geometric parameters and PPs associ-
ated to the current individual (of the generic population) of the
outer loop resulting from the first level of the strategy and having
the elastic symmetries imposed to the laminate at the macroscopic
scale, i.e., quasi-homogeneity and orthotropy. In the framework of
the FSDT based on the polar formalism for representing the lami-
nate stiffness matrices, the stacking sequence recovery problem,
i.e., the SLP, can be stated in the form of an unconstrained optimi-
sation problem (UNLPP) [13,14] as:

Tin I{fi(Xian) ). (31)
with
6
I(f(Xin)) = Zﬂ(xmn}‘ (32)
=1

where f,(x;,,) are quadratic functions in the space of PPs, each one
representing a requirement to be satisfied, like orthotropy, uncou-
pling, etc. For the problem at hand, the partial objective functions
are:

f](xm") - (.ﬂ. ‘iﬂm;‘:"'l’ku.l - Rn‘)z- fz(xmn) = (E—"—‘mm)w.)z.

R
. ey 2 ” a2
f3(xlnn) - (RL,;J{L) . f4(xlnn) = (W) '

ot = (SG52)" e - (%)

(33)

where f,(Xin) represents the elastic requirement on the orthotropy
of the laminate having the prescribed shape (imposed by the value
of K* = 0.1 which is related to the sign of p, of the current individ-
ual of the outer optimisation loop), f;(Xinn).f3(Xinn) and f4(X,,) are
the requirements related to the prescribed values of the PPs, ie.,
RS RY @Y =0,K* = 0.1, related to the current individual of the
outer optimisation loop, while f5(Xi..) and f;(Xi..) are linked to
the quasi-homogeneity condition.

As one can notice from Fig. 5, the SLP must be solved on-the-fly,
for each individual of each population of the outer loop. Of course,
since the solution search of the SLP is carried out in the space of QT
stacks, the terms [ (Xinn) and f(Xinn) in Eq. (33 ) are identically null.
For more details on the properties of the SLP, the interested reader
is addressed to [13,14,37].

The GA ERASMUS is used to perform the solution search of
problem (31). The genotype of the individual of the inner loop
depends upon the value of the number of saturated groups n,
related to the current individual of the outer loop. In particular,
the genotype of the generic individual of the inner optimisation
loop is characterised by n; + 1 genes: the first one codes the solu-
tion identifier IDgr, whilst the remaining ones code the orientation
angles of the n, saturated groups. Each angle can take values in the
interval [-89. 90] deg with a step of 1 deg.

5.4. Objective function and optimisation constraints of the outer
optimisation loop

The goal of the optimisation process illustrated in Fig. 5 is to
minimise the mass of the wing-box, which is, thus, the merit func-
tion of the problem at hand. The mass of the wing-box reads:

M(Xout) := Pp|yv(xam]~ (34)

where V(X ) is the overall volume of the GFEM of the wing-box.

The first design requirement, to be included in the problem for-
mulation, consists of a constraint on the first buckling factor 2 of
the structure, The constraint function reads:

81 Xouw) := 14, (35)

where the first buckling factor 4 is the result of an eigenvalue buck-
ling analysis conducted on the GFEM of the structure, i.e.,

[Kg (Xaue) + 2 Xout ) Ka g (Xour )W (Xoue) = 0. (36)

In the above formula, K¢ (X, ) and K, (X, ) are the stiffness and the
geometric stiffness matrix of the GFEM, respectively, while y (Xoy:)
is the eigenvector related to the first buckling factor i(Xyy).

The second and third design requirements deal with the first-
ply failure and delamination, respectively, which are assessed by
checking a set of inequalities after carrying out a static analysis
on the LFEM of the most critical ZOIl. As discussed in Section 6,
the most critical ZOI is identified and isolated by checking the local
LFI calculated from the laminate-level failure criterion presented in
Section 2. Once the most critical ZOI is identified, the LFEM is gen-
erated by using a high-order beam theory with a layer-wise kine-
matics in the CUF framework.

Specifically, as discussed in Section 6, the LFEM is subjected to
BCs of the Dirichlet type, which are calculated from the results of
a static analysis conducted on the GFEM (and opportunely trans-
ferred to the LFEM) as follows:

Ko (Xoue )Ug (Xou) = fo. (37)
K (X )0 (Kot X )+ K (X )0 (Xgue) = 0. (38)
with

Uy (Xoyr ) o= PG (Xoy ) (39)

In Eq. (37), ug{Xau) and f; are the vectors of generalised displace-
ments and external forces, respectively, of the GFEM. In Eq. (38),
Uy ( Xoyr. Xipn ) and U (X, ) are the unknown and imposed generalised
displacements of the LFEM, respectively, whilst matrices Ki(Xiu)
and Ky (X.,,) are the stiffness matrices of the LFEM after the applica-
tion of the BCs of the Dirichlet type.

As stated above, the BCs applied to the LFEM in terms of gener-
alised displacements u, (X,,) on the LFEM boundary depend upon
the results of a static analysis, 1.e., the vector u; (X, ), conducted on
the GFEM. The matrix P of Eq. (39) represents such transformation.

Once the results of the static analysis carried out on the LFEM
are available, the first-ply failure is evaluated by using the Hashin’s
failure criteria for the prediction of ply failure [77] together with
the mixed mode quadratic criteria to determine the onset of
delamination [78]. All failure criteria considered in this study are
assessed at the ply-level by considering the material coordinate
system shown in Fig. 6. For the sake of clarity, the Hashin's failure
criteria and the delamination criterion used in the formulation of
the optimisation problem are briefly described here below.

« Hashin's failure criteria. This set of criteria is used to determine
the first-ply failure based on the stress state and to determine
the dominating failure mode at the ply-level. The inequalities
to be checked (and corresponding to different failure modes
for both fibre and matrix) are:

1. Fibre Tensio;; 3 , ,
(Xion) = (X_|rl) + ‘% -1, (40)
2. Fibre Compression:
2

ﬂ-l
g](xmn) = (x—l(_]) ~1. (4])
3. Matrix Tension:
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4, Matrix Compression:
. Y(' ‘ Gy + 03
(022 + 633)° 0}y — 62033 0%, + 0%,
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(43)

In the above formula&, g, represents the generic component of
the stress tensor in the material coordinate system. X and Y rep-
resent the material strength along x, and x, axes, respectively;
subscripts T and C stand for tensile and compressive loadings,
respectively. S; denotes the material shear strength in the plane
x; — x;. Of course, if all the above expressions are lower than or
equal to zero no failure occurs.

Delamination onset criterion. The delamination onset is deter-
mined by means of the mixed mode quadratic criterion as:

< 033 > ! 023 : 13 !

g = (SP7) +(E2) +(52) -1 @
where < @33 >:= max (0, d13) is the transverse normal stress in
the material coordinate system (which must be considered if
and only if o33 is positive, i.e., when it tends to separate adjacent
plies). ¢\; and 6,3 are the transverse shear stresses, Zr is the
interlaminar normal strength, while S;3 and S;; are the trans-
verse shear strengths. If the above expression is lower than or
equal to zero no delamination occurs.

It is noteworthy that the above failure criteria require the assess-
ment of the 3D stress field within each lamina. This task is
achieved through local analysis of the ZOI by means of a layer-
wise 1D CUF model, which accurately describes the stress field.

The last set of criteria integrated in the problem formulation of
the outer optimisation loop is related to the blending requirement
among adjacent panels. Consider two adjacent laminates, denoted
by subscripts p and g, the former being thicker than the latter, i.e.,
n, = ng. As discussed in [42], in the PPs space, the blending require-
ment between the generic pair of adjacent laminates p and g can be
expressed as:

Bl = [Apa(npeca)]” + [Apg(nposa)]” = (n, — ng)”.
Bliend 1 = [Am("l’lclllz - [Am("I’ISZ)]Z — (my —ng)".
In Eq. (45), operator Agl(-) is equivalent to ., - -, while

Cq = oS AD] 55 = sindd ¢, = cos2d 5, = sin2d) . Of course,
the formul@ in Eq. (45) can be expressed in terms of variables o

(45)

X1

Fig. 6. Local frame orientation for the assessment of first-ply failure and delam-
ination related design requirements.

and a; by using the converse relation of Eq. (28). If the above
expressions are both lower than or equal to zero, the blending
requirement is satisfied.

The least-weight design of the wing-box structure can, now, be
formulated as a CNLPP as follows:

“xlin M{Xout)-
subject to :
(Ko (Xout) + 2(Xou Ko (Xout ) |G (Xou) = 0.

Ko (Xoue UG (Xou) = f. )

K (Xinn )0 (Xaue. Xinn ) + K(,(an}ﬁllxam] =0. (46)
L min I(f,(Xien).

£1(Xou) < 0.

g)(x'lnn) ( 0 J= 2 ..... 6
.gf,jgnd,, < 0 l: 0 1 ":fp q

It is noteworthy that problem (46) is a non-standard, non-convex
CNLPP. The non-convexity is due, on the one hand, to the nature
of the constraint functions involved in the problem formulation,
and, on the other hand, on the strong coupling between global
and local FE models (and, consequently, between the two loops con-
stituting the whole optimisation process). According to the flow-
chart illustrated in Fig. 5, one can state that the dependency among
the two set of variables of both inner and outer optimisation loops
is governed by a sort of strong coupling. On the one hand, the solu-
tion of the outer optimisation loop, i.e., Xew. depends upon the solu-
tion of the SLP (inner optimisation loop), i.e., Xi,,, through the
constraints g, (j = 2..... 6). On the other hand, according to Eq.
(31), the solution of the SLP depends upon the value of x,, (recall
that the SLP is solved on-the-fly for each individual of the outer
optimisation loop).

As stated in Section 4, the ERASMUS code [16] is used to carry
out the solution search for both outer and inner optimisation loops.
The bounds and the nature of the design variables involved in the
outer loop are reported in Table 3, while the design variables of the
inner loop have already been discussed in Section 5.3. It is note-
worthy that the genotype of the generic individual of the outer
optimisation loop is characterised by six chromosomes (one for
each panel), each one composed of four genes, where each gene
is related to a component of the design variables vector of the outer
loop.

As shown in Fig. 5, the GA ERASMUS is coupled, on the one
hand, with the ANSYS FE commercial software to calculate the
mass, the LFI distribution within the design region and the first
buckling factor of the wing-box and, on the other hand, with
MUL2@GL code to check the ply-level failure modes of the most
critical ZOI. Therefore, for each individual generated by the GA
ERASMUS, at each iteration of the outer optimisation loop, three
FE analyses are carried out: a static analysis (to assess the LFI dis-
tribution) and an eigenvalue buckling analysis on the GFEM of the
wing-box structure, and a static analysis on the LFEM of the ZOI to
check the first-ply failure and delamination onset. The LFEM
requires as input the stacking sequence of the sub-panel, which
is not provided by the outer optimisation loop. Accordingly, a fur-
ther local optimisation (inner loop) is necessary to determine the
stack of the ZOI. To this purpose, the SLP of the MS2LOS is solved
on-the-fly (for each individual of the outer loop) by means of the
ERASMUS algorithm providing, in this way, the optimal stacking
sequence in the space of QT solutions. Once the QT SS is obtained,
the MUL2@GL code computes the design requirements related to
the first-ply failure and to the delamination onset. These software
are interfaced by means of a routine programmed in Python
language.



Table 3
Bounds on the design variables of the outer optimisation loop.

Design Type Lower Upper Discretisation
variable bound bound step
%o continuous 00 10 -
o continuous 00 10 -
n integer 13 30 1
n, integer 1 5 1
Clamped section
Point loads

Fig. 7. Mesh and BCs of the GFEM of the wing-box structure.

At each iteration of the outer optimisation loop, the outputs are
the value of the objective function and of the constraints functions.
ERASMUS elaborates the results provided by the FE analyses to
perform the genetic operations. Both inner and outer loops are
repeated until the user-defined convergence criteria are satisfied.

Remark 5.1. The SLPof the inner loop s solved on-the-fly only for the
ZOl which is located on the most critical panel belonging to the design
region. This means that the optimal stacking sequence, which belongs
to the class of QT solutions, is calculated on-the-fly only for one
laminate of the design region. However, this is not an issue because, at
the end of the optimisation process, the stacks of the other panels can
be determined through the general strategy presented in [42], which
exploits the concept of search propagation direction, on the one hand,
to satisfy the blending constraints without introducing simplifying
hypotheses on the nature of the stack (e.g., symmetric, balanced, etc.)
and, on the other hand, to minimise the discrepancy between the
solutions of the FLP and of the SLP.

Remark 5.2. The number of panels composing the design region of
the benchmark structure is n, = 6. The number of design variables
of the outer optimisation loop is Ny, = 4n, = 24. The number of
design variables of the inner optimisation loop is Ny, = ng + 1, thus

Global FE Model

.

ZOI extraction

four-node beam

it depends on the current value of the number of saturated groups
related to the generic individual of the outer optimisation loop. The
overall number of optimisation constraints is ne, = 6 + 2Npens
where Ny.,s is the number of pairs of adjacent laminates belonging
to the design region. For the benchmark structure illustrated in
Fig. 4 Nyena = 4, thus the overall number of optimisation con-
straints is ney = 14.

6. The finite element models
6.1. The global finite element model of the wing-box

Two FE models of the wing-box structure are interfaced with
the outer optimisation loop shown in Fig. 5: the GFEM of the whole
wing-box and the LFEM of the most critical sub-panel belonging to
the design region.

The FE model of the wing-box is automatically generated by
means of an ad-hoc ANSYS parametric design language (APDL)
script. The geometry and the mesh of the GFEM are opportunely
parameterized and depend upon the input variables passed from
ERASMUS to the APDL script. The mesh and the BCs of the GFEM
are illustrated in Fig. 7. As far as BCs are concerned, u; = 0.¢, =0
(j = x.y.z) are set on nodes located at x = 0, while four point loads
are applied on the nodes located at x = L as discussed in Section 4.

Two analyses are then executed on the GFEM: a static analysis
to assess the LFI distribution and an eigenvalue buckling analysis
to compute the first buckling factor of the structure. The mesh of
the GFEM is composed of four-node ANSYS SHELL181 elements
with six degrees of freedom (DOFs) per node (FSDT framework
using the implicit definition of the laminate constitutive matrices
based on PPs). A mesh convergence analysis, not reported here
for the sake of brevity, has been carried out to calibrate the mesh
size in order to find a compromise between accuracy and compu-
tational costs. As a result of this sensitivity analysis, the element
size has been set equal to 80 mm for an overall number of elements
Nec = 4500.

6.2. Identification of the zone of interest: the laminate-level failure
criterion

The identification (and isolation) of the ZOI, which corresponds
to one of the sub-panels constituting the design region of the wing-
box, as shown in Fig. 4, is done by evaluating the local LFl according
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Sub-domain distribution over the beam cross-section

Fig. 8. Layer-wise high-order LFEM.



Table 4
Genetic parameters of the GA ERASMUS for the outer and inner loops.

Genetic parameters

Outer loop Inner loop
N. of populations 1 1
N. of individuals 480 70
N. of generations 500 100
Crossover probability 0385 085
Mutation probability 001 0.02
Selection operator roulette-wheel tournament selection
Elitism operator active active

Table 5
Mass of the reference and the optimised configurations of the wing-box.

Mass kg| Mass reduction %
Reference solution 261 -
Optimised solution, case 1 23405 1033
Optimised solution, case 2 24359 667

to the laminate-level failure criterion proposed by Catapano and
Montemurro in [3,63] and briefly discussed in Section 2.

Let Qpg be the set of elements constituting the design region. It
is possible to define the maximum LFI as follows:

am . lam
TWomax - max'FTW,r'

ecflpg (47)

where Fay, is the LFI of Eq. (15) evaluated at the centroid of each
element belonging to Qpg.

Let e, be the ID of the element having the maximum LFI. Let
Qspj =1..... 18) be the set of elements constituting the j-th
sub-panel of the design region. Of course, Qog = |J;_; 1405

The most critical ZOI corresponds to the j-th sub-panel to which
emax belongs. Subsequently, this panel is extracted from the GFEM
and meshed by using high-order 1D layer-wise elements as dis-
cussed in the following.

6.3. The local finite element model

The LFEM of the most critical ZOI is automatically generated by
the Python interface after a post-processing phase of the results of
the static analysis conducted on the GFEM. As discussed above, the
LFI distribution is used to identify, isolate and extract the most-
critical sub-panel of the design region of the wing-box, which con-
stitutes the ZOI to be modelled via high-order theories. Particu-
larly, as illustrated in Fig. 8, the LFEM of the ZOI is composed of
three high-order four-node beam elements (B4) belonging to the
LE class. The beam cross-section is made of eight L9 sub-domains
along the y-axis and one L9 sub-domain per ply along the z axis.
BCs of the Dirichlet type are imposed on the LFEM boundary. In
particular, the DOFs of the nodes located on the boundary of the
most-critical sub-panel are recovered from the results of the static
analysis performed on the GFEM and transferred to the LFEM. To
correctly ensure the transfer of the BCs from the GFEM to the LFEM

(which are characterised by different meshes and different element
types) the DOFs evaluated at the nodes belonging to the skin of the
sub-panel of the GFEM are interpolated and transferred to the
nodes located on the boundary of the sub-domains of the cross-
section of each beam element composing the LFEM (as shown in
Fig. 8) according to Eq. (39). Finally, a static analysis is conducted
on the LFEM to have an accurate assessment of the local stress
field, which is of paramount importance to correctly predict the
first-ply failure and the delamination onset according to the crite-
ria of Egs. (40)-(44). This is the main goal of the LFEM based on
high-order beam elements developed in the CUF framework.

7. Numerical results

As stated above, the least-weight design problem of a compos-
ite wing-box structure is faced in this study. A modified version of
the MS2LOS is employed to solve the problem and the global-local
modelling approach based on high-order layer-wise beam theories
in the framework of CUF is used to locally verify the failure criteria
of the critical ZOI of the wing-box during its optimisation. The aim
is to minimise the mass of the structure subject to requirements on
different nature, i.e., buckling, strength, delamination, blending, as
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Fig. 9. Mass of the best individual vs. number of generations for the best individual
during the optimisation process.

Table 6
Value of the design variables for the best individual of the outer optimisation loop (the dimensionless polar parameters are reported instead of the values of 2, and «,).
Case 1 Case 2
o [ n g My " n g

Panel 1 077 091 16 3 0.96 006 13 3
Panel 2 085 0.58 13 3 0.60 015 17 3
Panel 3 046 0.08 14 3 061 026 13 2
Panel 4 043 014 21 2 067 029 30 3
Panel 5 021 032 23 3 081 031 21 4
Panel 6 -0 67 014 16 3 000 026 15 4




detailed in Eq. (46). Specifically, the CNLPP of Eq. (46) has been
solved by considering two different cases: in the first one (referred
to as case 1) blending constraints are not included in the problem
formulation, while in the second one (referred to as case 2) they
are integrated in the problem formulation.

The genetic parameters tuning the behaviour of the GA ERAS-
MUS utilised to perform the solution search for both outer and
inner loops of the optimisation strategy discussed in Section 4.3
are listed in Table 4 for both cases 1 and 2. Regarding the
constraint-handling technique used in the outer loop, the ADP
method has been considered [79]. For more details on the numer-
ical techniques developed within the new version of ERASMUS and
the meaning of the values of the different parameters tuning the
algorithm the reader is addressed to | 16).
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Fig. 10. Mode shape related to the first buckling load for (a) reference solution, (b)
optimised solution of case 1 and (¢) optimised solution of case 2,

Table 5 lists the mass of the optimised configuration with
respect to the reference one for both design cases, whilst Table 6
reports the set of the outer loop design variables for each panel
of the wing-box design region for the best individual within the
population of the outer loop for cases 1 and 2.

Fig. 9 illustrates the value of the objective function for the best
individual (within the population) vs. the number of generations
for each design case. One can notice that the convergence towards
the optimised configuration of the wing-box is achieved after 25
iterations of the outer loop for case 1 and after 450 for case 2. This
is an expected result, which is due to the presence of the blending
constraints in the formulation of the CNLPP of Eq. (46). Indeed, the
presence of such constraints has an impact on the convergence rate
of the algorithm to find a feasible near-optimal solution. Moreover,
the integration of the blending requirement among the constraints
of the optimisation problem strongly modifies the topology of the
feasible region and some near-optimal solutions can be located in
small feasible “islands”. These solutions can be found only by
exploiting the exploration capabilities of the GA through the muta-
tion operator that can produce feasible solutions even at the end of
the number of iterations. To this end, when dealing with the blend-
ing requirement, the user should strongly increase the maximum
number of iterations at the price of higher computational costs.

The mode shape related to the first buckling load, for the refer-
ence solution and for the optimised one (for both cases 1 and 2), is
shown in Fig. 10, whilst the distribution of the LFI over the ele-
ments constituting the design region of the wing-box structure is
illustrated in Figs. 11 and 12 for cases 1 and 2, respectively.

From the analysis of these results, it can be immediately
inferred that, for both design cases, the most critical zone of the
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Fig. 11, Distribution of the LFl in the design region of the wing-box structure lor the
optimised solution of case 1,
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Fig. 12. Distribution of the LFl in the design region of the wing-box structure for the optimised solution of case 2,

Table 7
Optimal value of the design variables of both outer and inner loops of the ZO1 (sub-
panel 1in Fig 4 for both design cases),

Case 1
Outer loop Inner loop
o =077
gy, =091 29/ = 16" /12 /2° (12 /2 /2 - 16/
n=16 —167/2°/2°/12°/2° /127 — 16 /2|
ng=3
Case 2
Outer loop Inner loop
prp = 096
2y = 006 [87°/7°/ < 107 /87 ~ 10° /87" - 107/
n-13 T BT 8T T /8T 100
ng =3

design region is the sub-panel 1 belonging to panel 1, which is
selected as a ZOI (the LFI gets the highest values for some elements
belonging to this sub-panel). The values of the design variables of
the outer loop at the end of the optimisation process together with
the near-optimal stacking sequence found at the end of the inner
loop for the ZOI are reported in Table 7 for both design cases,
whilst the associated polar diagrams of the homogenised stiffness
matrices are depicted in Fig. 13 for case 1 and in Fig. 14 for case 2.

The through-the-thickness variation of the in-plane stress
field (oy. i.j = x.y) evaluated at the centre of the ZOIl for the
stacks provided in Table 7 is illustrated in Figs. 15 and 16 for
cases 1 and 2, respectively. No out-of-plane stresses are repre-
sented here because they are negligible whit respect to the
in-plane ones.

The following remarks can be drawn from the analysis of these
results,

In terms of the first buckling load, the near-optimal solution of
case 1 is very close to the reference one and the local buckling
occurs in sub-panel 10 of panel 4, whilst in the reference solution
the local buckling occurs, essentially, in sub-panels 15 and 16, as
illustrated in Fig. 10. Conversely, regarding the near-optimal solu-
tion of case 2, the buckling factor is about 60% greater than the one
of the reference solution.

As reported in Table 5, the optimised solutions of cases 1 and 2
are 10.33% and 6.67Y% lighter than the reference one, respectively,
which is a quite good achievement and demonstrates the effective-
ness of the proposed approach in solving the least-weight design
problem for the simplified composite wing-box considered in this
study. Of course, the mass of the optimised solution of case 2 is
higher than the counterpart of case 1 due to the presence of blend-
ing constraints.
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Fig. 13. Homogenised stiffness matrices of the best individual reported in Table 7,
case 1,

As summarised in Table 6, each panel composing the design
region of the solution of case 1 is characterised by a standard

orthotropic behaviour (with K* = 0 because P, 18 positive), except
panel 6, which shows the so-called “dog bone" orthotropy (i.e.,

with K* =1 because o is negative). Conversely, regarding the
optimised solution of case 2, all panels are characterised by a stan-
dard orthotropic behaviour.

Regarding the distribution of the number of layers and of the
number of saturated groups (i.e., the number of orientations to
be used in defining the QT stacking sequence during the on-the-
fly resolution of the SLP in the inner optimisation loop) over the
panels constituting the design region, the optimised solutions of
cases 1 and 2 reported in Table 6 are quite different and no clear
trends can be identified (this is normal when dealing with non-
convex multi-modal CNLPPs).

Figs. 13 and 14 highlights two important aspects of the optimal
stacking sequence characterising the ZOI for both design cases
(listed in Table 7): the solution is perfectly decoupled and homoge-
neous (thanks to the use of QT solutions), and it is totally orthotro-
pic in membrane and bending (the polar diagram is characterised
by two axes of symmetry) with the main axis of orthotropy ori-
ented at 0’ (a small deviation can be observed for the stacking
sequence of the ZOI in design case 2). Particularly, the QT stack
found for the ZOI in case 1 is characterised by a standard orthotro-
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n

(a) First component of homogenised stiffness matrices A*, B* and D*

(b) Homogenised shear stiffness matrix H*

Fig. 14. Homogenised stiffness matrices of the best individual reported in Table 7,
case 2.

pic behaviour, whilst the QT solution found for the ZOl in case 2 is
characterised by an almost square symmetric behaviour (because
the value of p, is one order of magnitude lower than the value of
P, see Table 6). Accordingly, as discussed in |13, when p, goes
to zero, the transverse shear stiffness matrix exhibits an isotropic
behaviour: this is confirmed by the second plot in Fig. 14, where
the polar diagram of the components of the transverse shear
matrix is almost a circle.

It is noteworthy that these results have been obtained by
exploiting the properties of general QT stacks which are neither
symmetric nor balanced: this is due to the great potential behind
the polar formalism in describing the elastic behaviour of lami-
nates without using symplifying hypotheses on the nature of the
stacks.

Finally, although the local analysis of the ZOI through the glo-
bal-local modelling approach based on high-order layer-wise
beam theories allows describing the through-the-thickness varia-
tion of the stress field in a way more accurate than commercial
FE codes, in the case study considered here, the optimised stack
is not characterised by particular issues in terms of first-ply failure
and delamination. Particularly, by comparing Figs. 15 and 16, one
can notice that in both cases the stresses within the ply are very
low and that in case 2 they are almost constant along the
through-the-thickness coordinate in each layer (the slope being
negligible).
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8. Conclusions

A modified version of the multi-scale two-level optimisation
strategy has been proposed in this work and has been applied to
the least-weight design problem of a simplified composite wing-
box structure subject to design requirements related to first buck-
ling load, blending constraints, delamination and first-ply failure.

The main contribution of this paper consists in the integration
of the global-local modelling approach based on high-order theo-
ries within the multi-scale two-level optimisation strategy of com-
posite structures based on polar parameters. This task, which is
anything but trivial, implies major modifications on the overall
architecture of the optimisation process. Particularly, the first-ply
failure and the delamination requirements are checked by using
the global-local modelling approach, based on the Carrera’s Uni-
fied Formulation, through a local layer-wise model whose kine-
matics relies on high-order beam theories. To this end, the work-
flow of the optimisation process has been modified to integrate
the global-local modelling strategy: this leads to a profound mod-
ification of the multi-scale two-level optimisation methodology
classically used in the literature because there is no longer a clear
distinction between first-level problem (structural optimisation)
and second-level problem (lay-up design). Conversely, in the mod-
ified version of the multi-scale two-level optimisation strategy, the
optimal design of the composite structure is carried out through
two nested optimisation loops, referred to as outer and inner loops,
which correspond to the first-level and second-level problems,
respectively. Moreover, due to the current work-flow there is a sort
of strong coupling between the two optimisation loops.

The outer loop deals with the macroscopic scale of the compos-
ite structure: at this scale, the behaviour of each laminate consti-
tuting the structure is described through the use of polar
parameters and geometrical parameters, which constitute the
design variables of the outer loop.

The inner loop deals with the mesoscopic scale (i.e., the lamina-
level) and focuses on the lay-up design of the most critical region
of the composite structure (the so-called zone of interest): the
design variables are the layer orientations and the goal is to find
a suitable stack matching the current value of the polar parameters
and thickness provided by the outer loop. This problem is solved
on-the-fly, by considering general stacks belonging to the space
of quasi-trivial solutions, without introducing simplifying
hypotheses on the nature of the stack, like symmetric stack, bal-
anced stack, etc.

From an optimisation standpoint, there is a strong coupling
between the two loops: the solution of the inner loop (the stack
of the most critical region) depends on the current values of the
design variables of outer loop (i.e., polar parameters and thick-
ness), whilst the solution of the outer loop implicitly depends upon
the solution of the inner loop because the requirements on the
first-ply failure index and on the delamination are introduced in
the problem formulation and checked on the stacking sequence
of the zone of interest by means of a global-local modelling strat-
egy based on high-order beam theories.

The optimised solution found for the benchmark structure con-
sidered in this study is 10.33% lighter than the reference one, when
blending constraints are not integrated in the problem formula-
tion, whilst the weight saving reduces to 6.67% when blending
requirement is considered in the problem formulation. In both
cases, the optimised solution is characterised by an enhanced
buckling strength and meets all the design requirements (in terms
of failure criteria and blending constraint), proving, thus, the effec-
tiveness of the proposed approach. Further tests need to be per-
formed to assess the effectiveness of the proposed methodology
when dealing with design problems involving complex geometries

and multiple loading conditions, by integrating into the problem
formulation more complex phenomena like post-buckling beha-
viour, damage mechanics, etc. The results obtained in this work
represent just a first (encouraging) step to develop a general
multi-scale optimisation approach to design complex composite
structures: research is ongoing in this direction.

9. Data availability
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cannot be shared at this time as the data also forms part of an
ongoing study.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

G. A. Fiordilino is grateful to the Nouvelle-Aquitaine region for
its contribution to this paper through the SMARTCOMPOSITE pro-
ject. M. Montemurro is grateful to French National Research
Agency for supporting this work through the research project
GLAMOUR-VSC (Global-LocAl two-level Multi-scale optimisation
strategy accOUnting for pRocess-induced singularities to design
Variable Stiffness Composites) ANR-21-CE10-0014.

References

[1) Montemurro M, Catapano A, A general b-spline surfaces theoretical lramework
for optimisation of variable angle-tow laminates. Compos  Struct
2019;209:561-78.

|2] Montemurro M, Catapano A. On the effective integration of manufacturability
constraints within the multi-scale methodology for designing variable angle-
tow lammatcs Compos Struct 2017;161:145-59. https://doiorg/101016/!

[3] Catapano A, Montemurro M. Strength optimisation of variable angle-tow
composites through a Iammate-level fallure cmenon ] Optim Theory Appl
2020;187:683-706.

[4] 1zzi MI, Catapano A, Montemurro m. Strength .md mass optlmmnon of
variable-stiffness composites in rhe pohr par.lmeters ipace Struct Mul[ldISCIp
Optim 2021:64:2045-73, 0 =

[5] Fierdiline G, 1zzi M, Montemurro M. A;,Pnex al |xwg,eumenu poln \ppm.nh for

the optimisation of variable stiffness composites: Application to eigenvalue
buckling problems. Mech Mater 2021:153:103574
[6) Montemurro M, Roiné T, Pailhés |. Multi-scale design of multi-material lattice

structures through a CAD-compatible topology optimisation algorithm. Eng
Struct 2022;273:115009.

|7) Ghasemi H, Park HS, Rabczuk T. A multi-material level set-based topology
optimization of flexoelectric composites. Comput Methods Appl Mech Eng
2018;332:47-62.

[8] Ghiasi H, Pasini D, Lessard L. Optimum stacking sequence design of composite
materials part i: Constant stiffness design. Compos Struct 2009;90(1):1-11.

[9] Jones R, Mechanics of composite materials. McGraw-Hill; 1975,

[10] Tsai S, Pagano NJ. Invariant properties of composite materials, Tech. rep., Air
force materials lab Wright-Patterson AFB Ohio; 1968.

[11) Tsai S, Hahn T. Introduction to composite materials, Technomic; 1980,

[12] Verchery G. Les Invariants des Tenseurs d'Ordre 4 du Type de I'Elasticité, In:
Boehler ]-P, editor. Mechanical Behavior of Anisotropic Solids/ Comportment
Méchanique des Solides Anisotropes. Netherlands, Dordrecht: Springer; 1982,
p- 93-104. https://doiorg/10.1007/978-94-009-6827-1 7

|13] Montemurro M. An extension of the polar method to the first-order shear
dcformatlon thcory of lamlnatcs Compos Struct 2015:127:328-39. hutps:(/

[14] M. Montemurro, Corrigendum to “an extensnon of the polar method to the
first-order shear deformation theory of laminates” [compos. struct. 127 (2015)
328-339), Composite Structures 131 (2015) 1143-1144. doi:10.1016/
J.compstruct.2015,06.002.

[15] Montemurre M. The polar analysis of the third-order shear deformation theory
of laminates, Compos Struct 2015:131:775-89. htips./doLorg/10.1016/

Leompstouct.2015.06.016.
[16] M. Montemurro, A contribution to the development of design strategies for the
optimisation of lightweight structures, HDR thesis, Université de Bordeaux,



http://hdl.handle.net/10985/15155, Bordeaux, France, 2018, http://hdLhandle.
net/10985/15155.

[17] Irisarri F-X, Lasseigne A, Leroy F-H, Le Riche R. Optimal design of laminated
composite structures with ply drops using stacking sequence tables. Compos
Struct 2014;107:559-69.

[18] Meddaikar Y, Insarn F-X, Abdalla M. Laminate optimization of blended
composite structures using a modified shepard’'s method and stacking
sequence tables. Struct Multidiscip Optim 2017;55:535-46.

[19] Akbulut M, Sonmez FO. Design optimization of laminated composites
using a new variant of simulated annealing. Comput Struct 201189
(17):1712-24,

|20) Yoo K, Bacarreza O, Aliabadi MF. Multi-fidelity probabilistic optimisation of
composite structures under thermomechanical loading using gaussian
processes. Comput Struct 2021:257:106655.

|21] Diaconu CG, Sato M, Sekine H. Feasible region in general design space of
lamination parameters for laminated composites. AIAA | 2002;40(3):
559-65.

[22] Liu B, Haftka R, Trompette P. Maximization of buckling loads of composite
panels using flexural lamination parameters. Struct Multidiscip Optim
2004;26(1 ):28-36,

[23] M. Bloomfield, ). Herencia, P. Weaver, Optimisation of anisotropic composite
plates incorporating non-conventional ply orientations, in: 49th AIAA/ASME/
ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference,
16th AIAAJASME/AHS Adaptive Structures Conlerence, 10th AIAA Non-
Deterministic Approaches Conlerence, 9th AIAA Gossamer Spacecralt Forum,
4th AIAA Multidisciplinary Design Optimization Specialists Conference, 2008,
p. 1918,

|24) Liu D, Toropov VV. A lamination parameter-based strategy for solving an
integer-continuous problem arising in composite optimization. Comput Struct
2013;128:170-4.

[25] Jing Z, Sun Q, Zhang Y, Liang K, Li X. Stacking sequence optimization of doubly-
curved laminated composite shallow shells for maximum fundamental
frequency by sequential permutation search algorithm. Computers &
Structures 2021;252:106560,

[26] H. Ding, B. Xu, Z Duan, W, Li, X. Huang. A cascadic multilevel optimization
framework for the concurrent design of the fiber-reinforced composite
structure through the NURBS surface, Engineering with Computers, doi:
10.1007/500366-022-01639-0.

[27) Herencia JE, Weaver PM, Friswell ML Initial sizing optimisation of anisotropic
composite panels with t-shaped stiffeners, Thin-Walled Structures 2008;46
(4):399-412.

|28] 1)sselmuiden ST, Abdalla MM, Giirdal Z. Implementation of strength-based
failure criteria in the lamination parameter design space. AIAA journal
2008;46(7):1826-34.

[29] K.R. Bramsiepe, V. Handojo, Y.M. Meddaikar, M. Schulze, T. Klimmek, Loads
and structural optimization process for composite long range transport
aircraft configuration, in: 2018 Multidisciplinary Analysis and Optimization
Conference, 2018, p. 3572,

[30] Macquart T, Bordogna MT, Lancelot P, De Breuker R. Derivation and application
of blending constraints in lamination parameter space for composite
optimisation, Compos Struct 2016;135:224-35. hups./dolorg/ 101016/

Lcompstruct.2015.09.016.

[31] Picchi Scardaoni M, Montemurro M. Convex or non-convex? On the nature of
the feasible domain of laminates, Eur. |. Mech. A, Solids 2021;85:104112.
https:iidoi.ore/10.101 6/ieuromechsol. 2020 104112

|32] Albazzan MA. Harik R. Tatting BF, Gurdal Z. Efficient design optimization of
nonconventional laminated composites using lamination parameters: A state
of the art. Compos Struct 2019;209:362-74.

[33] Montemurro M, Vincenti A, Vannucci P. A two-level procedure for the global
optimum design of composite modular structures - Application to the design
of an aircraft wing. Part 1: theoretical formulation. J. Optim. Theory Appl.
2012:155(1):1-23,

[34] Montemurro M, Vincenti A, Vannucci P. A two-level procedure for the global
optimum design of composite modular structures - Application to the design
of an aircraft wing. Part 2: numerical aspects and examples. |. Optim, Theory
Appl. 2012:155(1):24-53,

[35] Catapano A, Montemurro M. A multi-scale approach for the optimum design of
sandwich plates with honeycomb core. part 11: the optimisation strategy.
Compos  Struct  2014;118:677-90.  https://doiorg/10.1016/j.compstruct,

201407 058,

|36) Catapano A, Montemurro M. A multi-scale approach for the optimum design of
sandwich plates with honeycomb core. part i: homogenisation of core
pmpemes Compos Struct 2014:118:664-76. https://doiorg/10.1016)

[37] Montemurro M, Pagani A Fiordilino GA, Pailhés J, Carrera E. A general multi-
scale two-level optimisation strategy for designing composite stiffened panels.
Compos Struct 2018:201:968-79,

[38] Montemurro M, [z2zi M, EI-Yagoubi J, Fanteria D, Least-weight composite plates
with unconventional stacking sequences: Design. analysis and experiments. J.
Compos, Mater. 2019;53(16):2209-27. huips://doiorg/101177/0021998318

824783,

[39] Panettieri E. Montemurre M, Catapano A. Blending constraints for composite
laminates in polar parameters space. Composites Part B: Engineering
2019;168:448-57.

|40) 1zzi M, Montemurro M. Catapano A, Pailhés |. A multi-scale two-level
optimisation strategy integrating a global/local modelling approach for

composite  structures. Compos Struct 2020:237:111908. https://doiore!

|41] Picchi Scardaoni M, Montemurro M. A general global-local modelling
framework for the deterministic optimisation of composite structures. Struct
Multidiscip Optim 2020:62:1927-49.

[42] Picchi Scardaoni M, Montemurro M, Panettieri E, Catapano A, New blending
constraints and a stack-recovery strategy for the multi-scale design of
composite laminates. Struct Multidiscip Optim 2021:63(2):741-66.

|43] Bathe K-]. Finite element procedures, Klaus-Jurgen Bathe; 2006,

|44] Fish ], Pan L, Belsky V, Gomaa S. Unstructured multigrid methed for shells. Int.
J. Numer, Meth, Eng, 1996:39(7):1181-97.

|45] Moés N, Dolbow ], Belytschko T. A finite element method for crack growth
without remeshing. Int. |. Numer. Meth. Eng. 1999:46(1):131-50.

|46] Fish J. The s-version of the finite clement method. Computers & Structures
1992;43(3):539-47.

|47] Fish ), Markolefas S. Adaptive s-method for linear elastostatics. Comput.
Methods Appl. Mech. Eng. 1993;104(3):363-96.

|48] Shim KW, Monaghan D], Armstrong CG. Mixed dimensional coupling in finite
element stress analysis. Engineering with Computers 2002;18(3):241-52,

|49] Blanco P, Feijéo R, Urquiza S, A variational approach for coupling kinematically
incompatible structural models. Int, J, Numer, Meth, Eng. 2008;197(17-
18):1577-602,

[50] Mac K, Sun C. A refined global-local finite element analysis method. Int. J.
Numer, Meth, Eng. 1991;32(1):29-43,

[51] Dhia HB. Multiscale mechanical problems: the Arlequin method, Comptes
Rendus de I'Academie des Sciences Series 1IB Mechanics Physics. Astron.
1998;12(326):899-904.

|52] Hu H, Belouettar S, Potier-Ferry M, et al. Multi-scale modelling of sandwich
structures using the Arlequin method part i: Linear modelling. Finite Elem.
Anal. Des. 2008;45(1):37-51.

[53] Guyan RJ. Reduction of stiffness and mass matrices. AIAA Journal 1965;3
(2):380.

[54] A. Arrieta, AG. Stritz, Optimal design of aircraft structures with damage
tolerance requirements, Struct Multidisc Optim. 30. doi: 10,1007 /s00158-004-
0510-0,

[55] Ciampa PD, Nagel B, Tooren M. Global local structural optimization of
transportation aircraft  wings. In: in: 51st  AIAA/ASMESASCE/AHS/ASC
Structures, Structural Dynamics, and Materials Conference, American
Institute of Aeronautics and Astronautics: 2010. https://doiorg(10.2514/

5.2010-3008,

|56] V. Chedrik, Two-level design optimization of aircraft structures under stress,
buckling and aeroelasticity constraints, in: 10th World Congress on Structural
and Multidisciplinary Optimisation, 2013.

|57] Liu Q Jrad M, Mulani SB, Kapania RK. Integrated global wing and local panel
optimization of aircraft wing. In: in: 56th AIAAJASCE/AHS/ASC Structures,
Structural Dynamics, and Materials Conference. American Institute of
Aeronautics and Astronautics; 2015. 2Jidoi !

[58] Panettieri E, Montemurro M, Fanteria D, Coccla F. Multi-scale least-weight
design of a wing-box through a global/local modelling approach. ), Optim,
Theory Appl. 2020:1-24,

[59] zzi MI, Montemurre M, Catapano A, Fanteria D, Pailhes . Multi-scale
optimisation of thin-walled structures by considering a global/local
modelling approach, Proceedings of the Institution of Mechanical Engineers,
Part G: Journal of Aerospace Engineering 2020;235(2):171-88,

|60]) Picchi Scardaoni M, Montemurro M, Panettieri E. Prandtiplane wing-box least-
weight design: a multi-scale optimisation approach. Aerosp. Sci. Technol.
2020:106:106156.

|61] Picchi Scardaoni M, Izzi M1, Montemurro M, Panettieri E, Cipolla V, Binante V.
Multiscale Deterministic Optimisation of Blended Composite Structures: Case
Study of a Box-Wing. Thin-Walled Structures 2022;170:108521.

|62] Carrera E, Fiordilino G, Nagaraj M, Pagani A, Montemurro M. A global/local
approach based on cuf for the accurate and efficient analysis of metallic and
composite structures, Eng Struct. 2019;188:188-201,

|63] Catapano A, Montemurro M, On the correlation between stiffness and strength
properties of anisotropic laminates, Mech. Adv. Mater. Struct. 2019;26
(8):651-60. hitps://doiore/10.1080/15376494.2017.1410906.

|64] Garulli T, Catapano A. Montemurro M, Jumel ], Fanteria D. Quasi-trivial
stacking sequences for the design of thick laminates. Compos Struct
2018;200:614-23, hitps:j/doiorg/10.1016/jcompstruct 2018.05.120.

|65] Vannucci P, Verchery G. A special class of uncoupled and quasi-homogeneous
laminates. Compos. Sc. Technol. 2001;61(10):1465-73. https://dojorg!

10.1016/50266-3538(01100039-2,

|66] Vannucci P. Plane Amsotmpy by the Polar Method. Meccanica 2005;40(4-
6):437-54.

|67] Reddy JN. Mechanics of composne laminated plates and shells: theory and
analysis, Boca Raton. FL: CRC Press; 2003.

|68] TsaiS.WuE. ACeneralTbeocyo( Stnensth forAnlsotropic Materlals ) Compos
Mater, 1971,5(1):58-80.

[69] Khani A, IJsselmuiden S, Abdalla M, Curdal Z Deslgn of variable stiffness
panels for maximum strength using lamination parameters, Composites Part
B: Engineering 2011:42(3):546-52. https://doiorg/10.1016/

Leompositesh 2010,11.005.

[70) Carrera E, Giunta G, Petrolo M. Beam structures: classical and advanced
theories. John Wiley & Sons; 2011,

|71] Carrera E, Cinefra M, Petrolo M, Zappino E. Finite clement analysis of
structures through unified formulation. John Wiley & Sons; 2014,



|72] Carrera E, Fiordilino G, Nagaraj M. Pagani A, Montemurro M. A global/local
approach based on cuf for the accurate and efficient analysis of metallic and
composite structures. Eng. Struct. 2019;188:188-201.

[73] Catapano A, Montemurro M, Balcou |-A, Panettieri E. Rapid Prototyping of
Variable Angle-Tow Composnes Aerotecruca Missili & Spazio 2019;98
(4):257-71. Al

[74] Vannucci P. A Note on me Elastlc and Geometrlc Bounds for Composite
Laminates. J. Elast, 2013;112(2):199-215. hups./doiorg/10.1007/510659-

[75] Monlcmuno M, Catapano A, Doroszewski D. A multi-scale approach for the
simultaneous shape and material optimisation of sandwich panels with

cellular core. Composites Part B: Engineering 2016:91:458-72. https://doiorg/

10,1016/ compositesb 2016.01.030.

[76] Audoux Y, Montemurro M, Pailhés |. A Metamodel Based on Non-Uniform Rational
Basis Spline Hyper-Surfaces for Opnmzsauon of Composite Structures. Compos
Struct 2020;247:112439. [

|77] Z. Hashin, Failure criteria for unlduecnonal ﬁber composites,

78] Brewer JC, Lagace PA. Quadratic stress criterion for initiation of delamination. )
Compos Mater 1988;22(12):1141-55,

[79] Montemurro M, Vincenti A, Vannucci P, The automatic dynamic penalisation
method (ADP) for handling constraints with genetic algorithms, Comput
Methods Appl Mech Eng 2013;256:70-87.



