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Abstract

The mechanical behavior of materials is usually simulatga lzontinuous mechanics approach. However, non-
continuous phenomena such as multi-fracturing cannot berately simulated using a continuous description. The
discrete element method (DEM) naturally accounts for dificaities and is therefore a good alternative to the con-
tinuum approach.

This study continues previous work in which a DEM model wasgetlgped to quantitatively simulate an elastic
material with the cohesive beam bond model. The simulatidiitile cracks is now tackled. This goal is attained by
computing a failure criterion based on an equivalent hytdit@sstress. This microscopic criterion is then calibdate
fit experimental values of the macroscopic failure strese dimulation results are compared to experimental results
of indentation tests in which a spherical indenter is uselddd a silica glass, which is considered to be a perfectly
brittle elastic material.

Keywords: discrete element method, DEM, calibration, silica, kejtttrack, indentation, hertzian cone.

1. Introduction In this study, an improvement of this method is first
presented. The modification to the original method con-
sists of increasing the number of bonds for each discrete

urally describe a granular medium. However, compu- element to improve the convergence of the numerical

tational resources are required to manage a large l,]um_results. The main advantage of this modification that
ber of discrete elements. The method was first devel- & Petter description of a continuous media is obtained

oped in the early 1980s (1). More recently, researchers gt a rea_sonable computational cost, which only involvgs
have used this method to study damage in heteroge-"cr€asing the bond number and not the number of dis-
neous solids, such as concrete (2) or rock (3), and ho- Crete elements.
mogeneous materials, such as ceramics (4). In this work, brittle fracture is simulated using the
In this paper, studies are conducted on the silica glassdiscrete element method. Continuous mechanics laws
material, which can be considered to be a homogeneouscannot be used directly in a DEM formulation; there-
isotropic and perfectly brittle elastic material. This re- fore, the main challenge in using DEM is to develop a
search is related to the subsurface damage of silica glasgnedel that quantitatively fits the experimental observa-
due to surface polishing. In a preliminary study (5), tions of brittle phenomena, which are generally treated
discrete element models were used to obtain qualita- 2nd analyzed within a continuous mechanics framework
tively good agreement with experiments. The current (7)-
challenge is to develop a 3D DEM spherical model to A preliminary task is to choose a microscopic fail-
guantitatively simulate silica glass as a continuous me- ure criterion for the discrete element model. The main
dia. The first step of simulating the elastic behavior of failure criteria are based on computing the bond strain
silica (as represented by the Young’s modulus and Pois- (8) or stress (9). In these cases, a bond is deleted if the
son’s ratio), was achieved using the cohesive beam bondstress or the strain of the bond exceeds a threshold. This
model. This method was detailed in a previous paper process mimics crack formation in a material. These
(6). thresholds are determined by calibration tests. In this

The discrete element method (DEM) can quite nat-
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study, a novel criterion is developed based on the equiv- 2.1. Explicit time scheme
alent hydrostatic stress exerted on the discrete elements. The numerical solution is based on an explicit in-

The associated calibration procedure is also detailed. tegration scheme that is well suited to massive DEM
Polishing processes can be viewed as repeated indensimulations (18) and high velocity phenomena, such as

tation by abrasives on a glass surface (10); therefore, thefracturing or impact. The velocity Verlet scheme is

developed method is validated using indentation tests chosen for its simplicity. The discrete element orien-

with spherical indenters. Spherical indenters produce atations are described by quaternions, which arefn e

conical crack geometry. This result was first observed cient mean of computing the discrete element rotations

by Hertz (11, 12). This phenomena has been inten- (19, §2.5). The quaternions are normalized at every time

sively studied; however, computational models are still step to prevent numerical drift.

in discussion (13, 14, 15, 16, 17). The objective of this

paper is to investigate DEM as affextive alternative  2.2. Elastic behavior of the discrete domain

for studying complex cracking phenomena such as the  The (iscrete elements are connected by cohesive
hertzian cone crack. The numerical results from the dis- peams. These beams are fixed to the centers of the

crete element method are compared to the experimentalqnnected discrete elements. The beam reactions are

observgtions. _ ~ computed using the material strength theory for Euler-
In this paper, the developed method is presented in Bernoulli beams (20) according to the relative displace-
four steps, as given below : ments and rotations of the connected discrete elements.

_ o ] The cohesive beams operate in tensile, bending and tor-
1. First, background on DEM is briefly reviewed. The  gjon modes.
integration time scheme and the elastic model are  The heam parameter values (which are called micro-
introduced. The main results given in (6) are also scopic parameters) are evaluated by fitting the tensile
summarized in this section. stress to the elastic properties values of the material to
2. Second, a detailed procedure is presented for im- simulated (which are called macroscopic properties)
proving the description of a continuous media, by The beam parameter values are stable when the discrete
increasing the cardinal number of the discrete do- domain satisfies geometrical criteria : the geometrical
main. These results are compared to those given inisotropy, the cardinal number, the volume fraction and
(6). the fineness. That is, the same set of microscopic beam
3. Third, a failure criterion and an associated calibra- parameter values can be associated with a given material
tion procedure are developed. A series of standard and are independent of the discrete domain morphol-
failure tests (tensile, bending and torsion) are sim- 0gy, in terms of the discrete element number and the
ulated to validate the method. sample shape. This property is the main contribution of
4. Finally, indentation tests using a spherical indenter this method. This property is illustrated in the figure 1,
are presented. The numerical results are comparedWh'Ch shows the evolution of the macroscopic Young'’s

to the experimental observations and the prediction MPdulusEn and Poisson’s ratiey with the number of
of an analytical formulation for the following char- discrete elements in the sample. The figure 2 shows the

acteristics - simulatgd discrete sample_s. It appears that, for a num-
ber of discrete elements higher than 10 000, the macro-
e the contact area between the indenter and the scopic parametersy andvy become stable with total

silica glass substrate, fluctuation amplitudes of, respectively, 3% an8%.
e the critical load where the fracture occurs,
and 3. A simple method for improving the elastic behav-
ior

e the cone crack geometry.
In the previous study, the initial discrete domain was
compacted to obtain a cardinal number value of approx-
2. DEM background imately six. This value was chosen to correspond to the
definition of therandom close packin@RCP) of spheres

In this section, the explicit time scheme and the
me_thOd used to S'm_UIate the elastic behavior are.de- 1To distinguish micro from macro properties, micro paramstee
scribed. The reader is referred to (6) for further details. denoted by’ and macro parameters biy".
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Figure 1: Macroscopic Young's modullig, and Pois-

son’s ratiovy with the number of discrete element in  Figure 3: 3D histogram of cohesive beam direction be-
the samples with a given set of microscopic parameter fore and after increasing the cardinal number.

values.
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(21). In the simulations, each contact was replaced by as - | 1.9%) 013
cohesive beam bond. The number of cohesive bonds per ! '
discrete element was thus similar to the cardinal number |
of the RCP. % 5000 10000 15'000 20 0942

0
To improve the discrete description of a continuous Discrete element number

media, the number of cohesive beams per discrete ele-Figure 4: Macroscopic Young’s modul&s, and Pois-
ment was increased using the method described belowson’s ratiovy with the number of discrete elements the

samples with an increased cardinal number.

1. An initial discrete domain was built following the
RCP definition. This step was similar to the previ-

ous method. . _ . that were obtained before and after a Delaunay trian-
2. A Delaunay triangulation (22, §9.3) was applied. gulation. The results are quite similar. Therefore, the

The initial pOint cloud used to build the Delaunay isotropy level was notféected by the De|aunay triangu_
triangulation corresponded to the discrete element |ation process.

centers.

3. Cohesive beam bonds were constructed for each
edge obtained by the Delaunay triangulation link-
ing two discrete element centers.

Figure 4 shows the convergence of the elastic prop-
erties. The elastic properties are more stable than to
those without the Delaunay processing (see figure 1).
The macroscopic parametdtg andvy were stable for
This process increased the number of cohesive beamanore than 10 000 discrete elements with a total fluctua-
per discrete element to thirteen. tion amplitudes of, respectively, %% and 13%. Also,

A preliminary question concerns the level of geomet- the improved method reduced the error bars. Thatis, the
ric isotropy of the given discrete domain. This level dispersion between the elastic properties of distinct dis-
should not be degraded by the Delaunay triangulation. crete samples with a same number of discrete elements
Figure 3 shows 3D histograms of the beam direction were reduced.
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4, Thefracturecriterion

Within the discrete element approach, cracks are sim-
ulated by breaking bonds that reach a particular criterion
(23, 24, 25, 26, 27, 28). This approach mimics crack ex-
tension in a material. The broken bond causes an over- Figure 5: The hertzian cone; image taken from (30).
load on the bonds localized around the broken bond. In
turn, these overloaded bonds quickly reach the fracture
criterion and also break.

4.1. The standard failure criterion

The main existing approaches are based on the com-
putation of bond strains (8) or stresses (9). Strain or
stress can be viewed as dual variables; therefore, these
two approaches can be considered as similar to each
other. The implemented failure model is based on com-
puting the Rankine criterion, which has been suitably
for brittle materials (29, 83.3) :

1
0-” = E (O—Hmax + O-IZlmax + 4Tl21ma><) (1)

Figure 6: Qualitative 2D indentation test showing

where : cracks produced by using the standard failure criterion.

e 0, is the maximal equivalent Rankine stress,

® Tun 1S the maximal normal stress and, Zhou (31) developed a method to compute a stress ten-

e 7, is the maximal shear stress. sor for molecular dynamic simulations, which can for-
mulated for the DEM as follows :

If the maximal equivalent Rankine stresg is higher
than a calibrated value,,,, the cohesive beam is de- o = 1 }Z i@ fi+fi ®F; (2)
stroyed. 201 2 5

This model was investigated using a qualitative in-
dentation test (in two dimensions) with a spherical in- Where::
denter. Figure 5 illustrates a cone crack, which was
produced by loading a brittle material with a spherical
indenter in experiments (12, 11). Figure 6 shows the e & is the equivalent Cauchy stress tensor of the dis-
results of a qualitative 2D simulation in which the stan- crete elemerit
dard failure criterion defined in equation 1 was used.
The simulation did not produce expected crack geome- ® € is the volume of the discrete element
try. The fracture occurred near the indenter and prop-
agated throughout the thickness of the material. This
crack morphology did not conform to the experimental
observations. In conclusion, the standard failure crite-
rion could not reproduce the hertzian cone crack. e 1} is the relative position vector between the center

of the two bonded discrete elementndj.

¢ ®is the tensor product between two vectors,

o f?,— is the force exerted on the discrete elemieny
a cohesive beam that bonds the discrete element
to another discrete elemepand,

4.2. Development of a novel fracture criterion . .
P Zhou's original formulation of the Cauchy stress ten-

A criterion is developed using the hypothesis that sor is given below :
fused silica fracture occurs when the material is stressed
in a tensile hydrostatic mode. An equivalent Cauchy o = 1 Z Z Fj® frj 3)
stress tensor is computed for each discrete element. 2Q
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Figure 7: Qualitative 2D indentation test that shows
cracks performed with the developed failure criterion.

In this formulation, the stress tenseris computed over
avolumeQ and the forced;; are derived from Lennard-
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Figure 8: Evolution of the macroscopic failure stress
ow, for different values of the microscopic failure cri-
terion (r';yd for discrete samples containing 10 000 dis-
crete elements.

processed with dierent values ofr';yd. Each discrete
sample consisted of approximately 10 000 discrete ele-

Jones potential. In this case, the computed stress tensofments. Four distinct discrete samples were used. Figure

is symmetrical. This condition is not satisfied for dis-

8 shows the evolution of the macroscopic failure stress

crete elements with cohesive beam bonds, because théor different values of the microscopic failure criterion.

beams are not equally distributed around a discrete ele-

ment. The formulation, in equation 2, ensures that the

The stress evolved linearly. The macroscopic failure
stress for silica is 50MPa. The corresponding value

. ) : : o hyd :
computed stress tensor is symmetric. This computed of the failure criterion-*" is approximately 64/Pa.
stress tensor is used to determine the equivalent hydro-

static stress acting on discrete elemient
Brittle solid fracture is thought to be initiated under a
tensile stress in mode | (32). Accordingly, the developed

5.1. Convergence study

The mesh dependence of the failure criterion was in-
vestigated in the same way as the elastic parameter.

criterion assumes that fracture occurs if the hydrostatic Figyre 9 shows the evolution of the macroscopic fail-

stress is higher than a threshold vahd}éd :

yd

%trace((f_i) > Urf] 4)

If the criterion is reached, all the cohesive beams
bonded to the discrete elemérare broken. In the next
sections, this discrete element is calledraical ele-
ment.

A qualitatively similar indentation test to that in the
previous section was performed using the improved fail-
ure criterion. Figure 7 shows the simulation result. The
crack pattern exhibits a cone geometry. In conclusion,
the improved failure criterion in equation 2 provides a
better description of brittle fracture and will be used in
the remainder of the paper.

5. Calibration procedure

hyd

The failure criteriono”" was calibrated using the

ure stressry, as the function of the number of dis-
crete elements in the discrete sample. For this study the
calibrated value of the failure criterion for silica glass
o' = 64 MPawas used. The results showed a good
stability of the macroscopic failure stress around the sil-
ica glass values of 5MPa.

5.2. Validation tests

At this stage, only tensile tests were performed. The
behavior induced by the failure criterion was validated
by simulating bending and torsion tests for four distinct
discrete samples. The table 1 summarizes the macro-
scopic failure stresses obtained from the tensile, bend-
ing and torsion tests. Fairly similar average macro-
scopic failure stresses were obtained from tensile, bend-
ing and torsion tests accordingly to the material strength
theory.

The crack path for the numerical torsion tests were
also observed. Figure 10 shows an image of the test

same procedure described for the microscopic elasticresults. The crack geometry conformed to the prediction
parameters in (6). A series of failure tensile tests was by the material strength theory of a path along a helical
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Figure 9: Evolution of the macroscopic failure stress
om, as a function of the number of discrete element for

a failure criterions " = 64 MPa.

Sample| Tensile | Bending | Torsion
n°1l| 53.3MPa| 47.0 MPa| 51.5 MPa
n°2 | 48.0 MPa| 47.0 MPa| 47.6 MPa
n°3 | 48.3 MPa| 46.2 MPa| 50.9 MPa
n°4 | 48.2 MPa| 55.5 MPa| 47.7 MPa

average| 49.5 MPa| 48.9 MPa| 49.4 MPa

std. deviation| 2.2 MPa | 3.8 MPa | 1.8 MPa

Table 1: Overview of macroscopic failure stresses from
tensile, bending and torsion tests; the four discrete sam-
ples used consisted of approximately 10 000 discrete el-
ements.

surface oriented at 4%0 the main axis of the cylindrical
sample.

5.3. Conclusion

In this section, novel failure criterion was developed
corresponding to the application of a maximal hydro-
static stress to the discrete elements. A preliminary
study, involving qualitative indentation tests was used,
to compare the standard criterion to the developed cri-
terion in terms of the crack paths. The results using the
developed criterion agreed with the experimental obser-
vations, while the standard criterion did not describe the
experimental results accurately.

The calibration procedure for the microscopic failure
criterion for silica glass was also described. The sta-
bility of the elastic parameters and the failure behavior
were studied. The macroscopic failure stress was fairly
independent of the sample morphology. Thus, if the dis-
crete domain satisfied the geometric criteria (the geo-
metric isotropy, the coordination number, the compacity
and the fineness) the failure criterion could be consid-
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Crack path

(a) View showing all discrete elements.

]

(b) View showing only critical discrete elements.

Figure 10: View of crack path in a torsion test; The
highlighted discrete elements attained the failure crite-
rion (critical discrete elements).

ered to be independent of the discrete sample shape and
mesh size.

Finally, the failure criterion was validated by bend-
ing and torsion tests. The developed model adequately
predicted the failure stress levels and the crack paths in
comparison with the material strength theory. For com-
pleteness, more complex failure tests, known as inden-
tation tests, are presented in the next section.

6. Application of the model to indentation testswith
a spherical indenter

Figure 5 illustrates the crack geometry for an inden-
tation test with a spherical indenter for loading a silica
glass sample. Figure 11 shows an idealized view of the
sample and the indenter and the associated parametriza-
tion, where :

e Pdenotes the indenter load,

e Rdenotes the indenter radius,

dc denotes the contact diameter indenter-sample,

d denotes the cone surface diameter,

| denotes the cone length and

adenotes the cone angle.



silica discrete sample

bottom surfac"

Flgurg 11: Idealized sketch and parametrization of a Figure 12: Discrete element model for the indentation
hertzian cone crack. test

The simulation was based on the discrete element
model described in this paper. Contact management be-
tween the indenter and the silica discrete sample was

incorporated into this model. e R is the radius of the discrete elemént

e E andv are the Young’s modulus and Poisson’s ra-
tio respectively and

6.1. Numerical method for indenter-sample contact
management 6.2. Overview of the simulation conditions

The indenter is simulated by a single discrete element ¢ giscrete silica sample is composed by 80 000 dis-
acting on the discretized silica glass sample. Figure 12 ¢ ete elements and 1 040 000 cohesive beams. lts size
shows this configuration for the indenter and the sample. ;¢ 40 um along thex andZ axes and 2m along the
A constant velocity along they axis is applied to the y axis. The gravity was neglected. The time step is
indenter to load the discrete sample. The diSplaceme”tapproximately 5 10 s The total number of iter-
along they axis of the discrete elements belonging 10 4iions for one simulation is approximately 80 000. A
the bottom face of the silica sample are forbidden. Dur- -,nstant velocity was applied to the indenter. Its value
ing its displacement, the indenter contacts some dlscretewaS 03 m.s'L. Dynamic dfects were minimized by in-
elements on the upper face of the discrete sample. Theyoqycing a purely numerical damping factor into the
reaction force induced by these elementary contacts are, ;merical scheme as described in (34, 6).
calculated using the hertzian contact law (33) :

L 4 6.3. Validation of elastic behavior
fij = 2B R U (5) ) ) _ )
3 The model was first validated in terms of the elastic
o1 1-v2 1- V2 behavior. The theoretical evolution of the contact radius
with B E + E; 6) between the indenter and the sample was compared with
1 1 1 the numerical data. The theoretical evolution of the con-
R°R + 5 (7) tact radius was calculated using the hertzian contact law,
! which is given by (33):
where : X
o o h  [3PR)3
¢ i andj refer to two distinct discrete elements, one & =\2 (8)

of which is always the indenter. The contacts be-

tween discrete elements of the silica sample are not  The contact radius was "measured" in the simulation
take in account; by recording the discrete elements in contact with the
indenter. However, this procedure does not produce an
exact measurement of the contact radius. The contact
area is overestimated because of the contribution from
¢ hj; is the interpenetration between the two discrete the discrete elements at the boundary of this set. An un-
elements andj; derestimated contact area can be obtain by subtracting

e Ujj is the unit vector between the centers of the two
discrete elements, which are in contact;



‘ D Material | Diamond

- Theoritical | e ITT Young modulus| 1054 GPa
——————— Poisson’s ratio | 0.1

Indenter radius| 10 um

Indente

Table 2: Overview of indenter properties.

Contact radiusy(m)
O P N W b~ o N

c Material | Silica glass
ontact area
oo o4 68 = 12 16 Young modulus | 72.5 GPa
Indenter Force (N) Poisson's ratio | 0.17
Figure 13: Theoretical and numerical evolution of the Sample ra_d|us 50 mm
Sample thickness 5 mm

indenter contact radius with the indenter force.
Table 3: Overview of sample properties.

the average value of the discrete element radii in this set

from the contact area overestimate. Critical indenter load Pt | 200 :”N
Figure 13 shows the evolution of the theoretical and Cone angle a| 2535

the simulated contact radius with the indenter force. The Cone Igngth | | 8.0-9.2 um

maximal and minimal measured diameters of the con- | Cone diameter (atsurface) d | 15.0 um

tact area were™ andd™". The indenter force in the

. o Lo Table 4: Characteristics of the experimentally observed
simulation is computed using :

hertzian cone.

P=-> Ty )

Where f; is the reaction force exerted by the the dis- indentation, the imaging of the hertzian cone was felic-
crete element on the indenter. In this figure, the gray itated by soaking the sample in a fluorescent dye, fol-
arearepresents the margin between the overestimate antbwed by thorough rinsing with DI water. This proce-
the underestimate contact radius. The red dashed linedure enabled the dye to penetrate into the cracks to en-
corresponds to the theoretical contact radius, which is able its visualization.
bounded by the overestimate and the underestimate con- A preliminary statistical study was performed. The
tact radius. The elastic behavior of the numerical inden- results showed that 90% of the hertzian cone cracks ap-
tation tests was therefore validated. peared at indenter loads bellow 56fN. Each inden-
ter print was examined to reject tests in which radial
6.4. Overview of experimental observations used as ref- OF lateral cracks happened that did not correspond to
erence a hertzian cone crack. Hertzian cone cracks were pro-
duced for an indenter force range between 200 and 500
The work aims to further simulation techniques for mN. This dispersion was attributed to the microscopic
glass polishing. The abrasive particles used to polish scale of the test. At this scale, small variations in param-
silica glass range in size from one micrometer to one eters such as the surface roughness, the indenter erosion
hundred micrometers. Spherical indenters with a radius or the material default induced large variations in the
of ten micrometers were used in the indentation exper- results.
iments to correspond to the order of magnitude of the A test that produced a critical indenter load of 200
size of practical abrasive particles. mN was chosen to compare numerical simulation re-
The micro-indentation tests were carried out. The ex- sults on the same order of magnitude as the experimen-
perimental procedure were similar to those described in tal observation. Table 4 summarizes the characteristics
(35, 36). Tables 2 and 3 list the properties of the inden- of the chosen hertzian cone crack. These characteris-
ter and the silica sample. tics were obtaining by measuring several cross-sections
Figure 14 shows a hertzian crack in a fused silica of the cone because the experimental cone was not per-
sample. The images were obtained using confocal mi- fectly axisymmetric. Consequently,ftérent measured
croscopy using the apparatus described in (37). After values were obtained forfiiérent cross-sections.
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Figure 15: Evolution of the indenter force and the crit-
ical number of discrete elements with number of itera-
tions.

6.5. Indenter critical force P

Figure 15 shows the evolution of the simulated inden-
ter force and the critical discrete element number with
the iteration number. Theritical discrete elementare
the discrete elements that attained the failure criterion.
This graph shows the following three distinct zones:

1. theloadingzone, in which no fracture occurred,

2. theconezone, which corresponded to the hertzian
cone generation as the number of critical discrete
elements slowly increased,

3. theruin zone, in which the discrete sample was de-
stroyed as the number of critical discrete elements
increased quickly and the indenter load decreased
to a null value.

The indenter load corresponding to the beginning

(PT" = 95 mN) and the endingRT@* = 320 mN) of

the hertzian cone generation was on the same order of
magnitude as the experimental observations. An ex-
act concordance wasftcult to obtain. A macroscopic
failure stress of silicary = 50 MPa has been estab-
lished from macroscopic mechanical tests such as four
bending point tests or tensile tests. This macroscopic

Figure 14: Image of a hertzian cone obtained by yajye can be underestimated in micro-indentation tests,
photo-luminescence microscopy; the surface color cor- pecause of the extremely small loaded volume. Grif-
responds to the image in reflexion mode at 458 nanome-fith hypothesized that, brittle material fractures are ini-
ters and the cone color corresponds to the image in flu- tjated by pre-existing micro or nano cracks (38). For
orescence mode in the 435 to 661 nanometers spectrajower activated volumes, the probability of the stress

band for an excitation wavelength of 405 nanometers.

yield to open an pre-existing crack is lower and the re-
sultant failure stress is higher than the macroscopic fail-
ure stress. This sizeffect is well known for concrete
(39).

6.6. Hertzian cone geometry

In this section, the hertzian cone geometry in the sim-
ulation is compared to the experimentally observed ge-
ometry. The number of critical discrete elements at the



highly simplified by this property. The convergence of
the results was also improved by significantly increas-
ing the cardinal number of the discrete domain with a
Delaunay triangulation process.

The failure criterion was validated by torsion and
bending tests. The results for the macroscopic failure
stresses and the crack path geometries agreed qualita-
tively and quantitatively with the predictions of material
strength theory.

Finally, this model was applied to a spherical inden-
tation problem. The discrete model predicted a crack
geometry similar to the experimentally observed geom-
etry.

) o ) ) In conclusion, the proposed model is an interesting
Figure 17: Characteristics of the simulated hertzian gjternative for studying complex crack phenomena such
cone crack. as the generation of hertzian cone cracks.

Critical discrete elemen
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