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a b s t r a c t

We review the foundations and applications of the proper generalized decomposition (PGD), a power

ful model reduction technique that computes a priori by means of successive enrichment a separated

representation of the unknown field. The computational complexity of the PGD scales linearly with the

dimension of the space wherein the model is defined, which is in marked contrast with the exponential

scaling of standard gridbased methods. First introduced in the context of computational rheology by

Ammar et al. [3,4], the PGD has since been further developed and applied in a variety of applications

ranging from the solution of the Schrödinger equation of quantum mechanics to the analysis of laminate

composites. In this paper, we illustrate the use of the PGD in four problem categories related to computa

tional rheology: (i) the direct solution of the FokkerPlanck equation for complex fluids in configuration

spaces of high dimension, (ii) the development of very efficient nonincremental algorithms for transient

problems, (iii) the fully threedimensional solution of problems defined in degenerate plate or shell

like domains often encountered in polymer processing or composites manufacturing, and finally (iv) the

solution of multidimensional parametric models obtained by introducing various sources of problem

variability as additional coordinates.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The direct solution of many problems in scientific computing

has long been thought intractable in view of the socalled curse

of dimensionality. Consider for example the quantummechanical

description of a physical system made of N particles. The evolu

tion of the associated wavefunction is governed by the Schrödinger

equation (or its relativistic Dirac counterpart). This defines a tran

sient problem to be solved in a space of dimension d = 3N + 1. A

typical gridbased discretization with M nodes for each coordinate

would yield a total number of discrete unknowns of order Md. A

rather coarse discretization (M = 103) of a modest atomic system

(d = 30) would thus involve 1090 unknowns. This is a gigantic num

ber indeed, larger than the presumed number 1080 of elementary

particles in the universe, according to the estimate put forward in

the 1920s by the famous astronomer A.S. Eddington.
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Problems defined in highdimensional spaces abound. For

example, the atomistic and mesoscopic models of theoretical rheol

ogy usually involve a large number of configurational coordinates.

They thus also constitute a rich source of mathematical problems

defined in highdimensional spaces. In particular, coarsegrained

models of kinetic theory result in a FokkerPlanck equation for

the distribution function that must be solved in both configura

tion space, physical space and temporal domain. Until recently, the

direct numerical solution of the FokkerPlanck equation has been

limited to models having but few (2 or 3) configurational degrees

of freedom (see e.g. the review [22]).

In two recent papers [3,4], we have proposed a technique able

to circumvent, or at least alleviate, the curse of dimensionality. This

method is based on the use of separated representations. It basically

consists in constructing by successive enrichment an approxima

tion of the solution in the form of a finite sum of N functional

products involving d functions of each coordinate. In contrast with

the shape functions of classical methods, these individual functions

are unknown a priori. They are obtained by introducing the approx

imate separated representation into the weak formulation of the

original problem and solving the resulting nonlinear equations. If

M nodes are used to discretize each coordinate, the total number of

unknowns amounts to N × M × d instead of the Md degrees of free



dom of classical meshbased methods. Thus, the complexity of the

method grows linearly with the dimension d of the space wherein

the problem is defined, in vast contrast with the exponential growth

of classical meshbased techniques.

In [3], for example, this new technique has allowed us to

compute solutions of the FokkerPlanck equation in configuration

spaces of dimension 20 using the multibeadFENE spring model of

dilute polymer solutions.

The method was later coined proper generalized decomposition

(or PGD), as in many cases the number N of terms in the separated

representation needed to obtain an accurate solution is found to

be close to that of the optimal decomposition obtained by applying

a posteriori the proper orthogonal decomposition to the problem

solution.

The goal of the present review paper is twofold. First, we

wish to describe the PGD with sufficient detail and general

ity in order to allow the interested reader to grasp its main

features and to implement it for her or his particular appli

cation. Second, we illustrate recent developments of the PGD

for the solution of four problem categories that are typical of

computational rheology: (1) the direct solution of the Fokker

Planck equation for complex fluids in configuration spaces of high

dimension, (2) the development of very efficient nonincremental

algorithms for transient problems, (3) the fully threedimensional

solution of problems defined in degenerate plate or shelllike

domains often encountered in polymer processing or composites

manufacturing, and finally (4) the solution of multidimensional

parametric models obtained by introducing various sources of

problem variability as additional coordinates. We also point to the

recent literature where other applications of the PGD have been

reported.

Use of the PGD is by no means restricted to computational rhe

ology. In fact, each of the above problem categories instantiates

a significant challenge in scientific computing that the PGD can

address efficiently whereas standard techniques either cannot be

used at all or are computationally very expensive indeed:

(1) Quantum mechanics and molecular modeling of complex flu

ids are not the only branches of science that suffer from the

curse of dimensionality. Consider for example a chemical pro

cess involving so few molecules of the reacting species that use

of the continuum concept of concentration is not valid. This

situation is often found in genetic processes such as expres

sion of genes. The state of such a discrete system is given by a

probability distribution for the number of individual molecules

of each one of the d coexisting species. The balance equation

governing the evolution of the system, the socalled master

equation, is again defined in a highdimensional space that

prevents direct solution by means of standard gridbased tech

niques. There are of course alternative methods to address these

highdimensional problems indirectly, stochastic simulations

being one of the foremost approaches. Stochastic techniques

have their own challenges, however. While variance reduction

is always an issue, it is impossible with a stochastic technique to

implement parametric or sensitivity studies that go beyond the

brute force approach of computing a large number of expensive,

individual simulations.

(2) The second problem category involves timedependent prob

lems not necessarily defined in highdimensional spaces, but

whose spectrum of characteristic times is so wide that standard

incremental time discretization techniques cannot be applied.

In such cases, the time step is extremely small as a consequence

of numerical stability requirements. Thus, simulations over the

much larger time interval of interest, which typically requires

the solution of a large linear algebraic system at each time

step, simply become impossible. Multiscale models involving

a wide range of characteristic times abound in many fields.

Reactiondiffusion models of the degradation of plastic materi

als, for example, describe chemical reactions occurring within

microseconds coupled to diffusion of chemical substances that

takes place over years.

(3) Problems of the third category are defined in degenerate geo

metrical domains. By this we mean that at least one of the

characteristic dimensions of the domain is smaller by sev

eral orders of magnitude than the others. This is the case of

bar, plate or shelllike domains typical of materials processing

applications. In simple situations, such problems are readily

transformed into reduced, one or twodimensional approxi

mate theories (e.g. the classical elastic plate theory). When

geometrical or material nonlinearities are present, however,

it is usually impossible to derive lowerdimensional models of

sufficient validity. Standard gridbased discretization methods

then quickly become impractical, in view of the compulsory dis

cretization of the small length scales that yield extremely fine

meshes.

(4) Finally, many problems in process control, parametric model

ing, inverse identification, and process or shape optimisation,

usually require, when approached with standard techniques,

the direct computation of a very large number of solutions of the

concerned model for particular values of the problem param

eters. Consider for example the optimization of a pultrusion

process where optimal parameter values must be determined

for process operating conditions (e.g. pultrusion speed, position

and temperature of heaters) and material properties (e.g. ther

mal and rheological properties of the resin). Clearly, it would be

useful to be able to simulate this process at once for all values

of these parameters within a prescribed interval, and then per

form data mining within this rather general solution to identify

optimal values. As we shall see, this can be achieved with the

PGD by viewing all sources of problem variability as additional

coordinates of a higherdimensional problem.

The paper is organized as follows. We begin with a brief discus

sion of model reduction and illustrate the use of the standard POD

technique to build a reducedorder model a posteriori. The PGD is

then described at a glance in Section 3. Technical details are given

in Section 4 for the solution of a parametric heat transfer problem.

The four problem categories are further discussed in Section 5, and

their individual PGD treatment is illustrated in the four subsequent

sections.

2. Model reduction: information versus relevant

information

Consider a mesh having M nodes, and associate to each

node an approximation function (e.g. a shape function in the

framework of finite elements), we implicitly define an approx

imation space wherein a discrete solution of the problem is

sought. For a transient problem, one must thus compute at

each time step M values (the nodal values in the finite ele

ment framework). For nonlinear problems, this implies the

solution of at least one linear algebraic system of size M at each

time step, which becomes computationally expensive when M

increases.

In many cases, however, the problem solution lives in a sub

space of dimension much smaller than M, and it makes sense to

look for a reducedorder model whose solution is computation

ally much cheaper to obtain. This constitutes the main idea behind

the proper orthogonal decomposition (POD) reduced modeling

approach, which we revisit in what follows.



2.1. Extracting relevant information: the proper orthogonal

decomposition

We assume that the field of interest u(x, t) is known at the nodes

xi of a spatial mesh for discrete times tm = m · 1t, with i ∈ [1, . . ., M]

and m ∈ [0, . . . P]. We use the notation u(xi, tm) ≡ um(xi) ≡ um
i

and

define {u}m as the vector of nodal values um
i

at time tm. The main

objective of the POD is to obtain the most typical or characteristic

structure �(x) among these um(x), ∀m [39]. For this purpose, we

maximize the scalar quantity

˛ =

P
∑

m=1

[

M
∑

i=1

�(xi)u
m(xi)

]2

M
∑

i=1

(�(xi))
2

, (1)

which amounts to solve the following eigenvalue problem:

c� = ˛�. (2)

Here, the vector � has icomponent �(xi), and {c} is the twopoint

correlation matrix

cij =
P
∑

m=1

um(xi)u
m(xj) =

P
∑

m=1

um · (um)
T
, (3)

which is symmetric and positive definite. With the matrix {Q}

defined as

Q =











u1
1

u2
1

· · · uP
1

u1
2

u2
2

· · · uP
2

...
...

. . .
...

u1
M u2

M · · · uP
M











, (4)

we have

c = Q · QT . (5)

2.2. Building the POD reducedorder model

In order to obtain a reduced model, we first solve the eigenvalue

problem Eq. (2) and select the N eigenvectors �i associated with the

eigenvalues belonging to the interval defined by the highest eigen

value ˛1 and ˛1 divided by a large enough number (e.g. 108). In

practice, N is found to be much lower than M. These N eigenfunc

tions �i are then used to approximate the solution um(x), ∀m. To

this end, let us define the matrix {B}= [�1 . . . �N], i.e.

B =









�1(x1) �2(x1) · · · �N(x1)

�1(x2) �2(x2) · · · �N(x2)
...

...
. . .

...

�1(xM) �2(xM) · · · �N(xM)









. (6)

Now, let us assume for illustrative purposes that an explicit

timestepping scheme is used to compute the discrete solution

{u}m+1 at time tm+1. One must thus solve a linear algebraic system

of the form

Gm um+1 = Hm. (7)

A reducedorder model is then obtained by approximating {u}m+1

in the subspace defined by the N eigenvectors �i, i.e.

um+1 ≈
N
∑

i=1

�i �m+1
i

= B �m+1. (8)

Eq. (7) then reads

Gm B �m+1 = Hm, (9)

or equivalently

BT Gm B �m+1 = BT Hm. (10)

The coefficients �m+1 defining the solution of the reducedorder

model are thus obtained by solving an algebraic system of size N

instead of M. When N ≪ M, as is the case in numerous applications,

the solution of Eq. (10) is thus preferred because of its much reduced

size.

Remark 1. The reducedorder model Eq. (10) is built a poste

riori by means of the alreadycomputed discrete field evolution.

Thus, one could wonder about the interest of the whole exercice.

In fact, two beneficial approaches are widely considered (see e.g.

[10,13,21,28,34,37–39]). The first approach consists in solving the

large original model over a short time interval, thus allowing for the

extraction of the characteristic structure that defines the reduced

model. The latter is then solved over larger time intervals, with the

associated computing time savings. The other approach consists in

solving the original model over the entire time interval, and then

using the corresponding reduced model to solve very efficiently

similar problems with, for example, slight variations in material

parameters or boundary conditions.

2.3. Illustrating the construction of a reducedorder model

We consider the following onedimensional heat transfer prob

lem, written in dimensionless form:

∂u

∂t
= �

∂2u

∂x2
, (11)

with constant thermal diffusivity � = 0.01, t ∈ (0, 30] and x ∈ (0, 1).

The initial condition is u(x, t = 0) = 1 and the boundary conditions

are given by ∂u
∂x

∣

∣

x=0,t
= q(t) and ∂u

∂x

∣

∣

x=1,t
= 0.

Eq. (11) is discretized by using an implicit finite element method

on a mesh with M = 100 nodes, where a linear approximation is

defined in each of the Me = 99 elements. The time step is set to

1t = 0.1. The resulting discrete system can be written as:

K um+1 = M um + qm+1, (12)

where the vector {q}m+1 accounts for the boundary heat flux source

at tm+1.

First, we consider the following boundary heat source:

q(t) =

{

1 t ≤ 10

0 t > 10
. (13)

The computed temperature profiles are depicted in Fig. 1 at discrete

times tm = m, for m = 1, 2, . . ., 30. The red curves correspond to the

heating stage up to t = 10, while the blue curves for t > 10 illustrate

the heat transfer by conduction from the warmest zones towards

the coldest ones.

From these 30 discrete temperature profiles, we compute the

matrices {Q} and {c} in order to build the eigenvalue problem (2).

The 3 largest eigenvalues are found to be ˛1 = 1790, ˛2 = 1.1, ˛3 = 0.1,

while the remaining eigenvalues are such that ˛j < ˛1 × 10−8,

4 ≤ j ≤ 100. A reduced model involving a linear combination of the

3 eigenvectors related to the first 3 largest eigenvalues should thus

be able to approximate the solution with great accuracy. In order to

account for the initial condition, it is convenient to include the ini

tial condition in the approximation basis (even though it is then no

longer orthogonal). Fig. 2 shows the resulting approximation func
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Fig. 1. Temperature profiles corresponding to the source term (13) at discrete times

tm = m, for m = 1, 2, . . ., 30. The red curves correspond to the heating stage up to t = 10,

while the blue curves for t > 10 illustrate the heat transfer by conduction from the

warmest zones towards the coldest ones. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of the article.)

tions in normalized form, i.e.
�j

‖�j‖
(j = 1, 2, 3) and u0

‖u0‖
. Defining the

matrix {B} as follows

B =

[

u0

‖u0‖
�1

‖�1‖
�2

‖�2‖
�3

‖�3‖

]

, (14)

we obtain the reduced model related to Eq. (12),

BT KB �m+1 = BT MB �m + BT qm+1, (15)

which involves 4 degrees of freedom only. The initial condition in

the reduced basis is (�0)
T

= (1, 0, 0, 0).

Eq. (15) and the relationship {u}m+1 = {B}zm+1 then yield

approximate solution profiles at a very low cost indeed. The results

are shown in Fig. 3 and they cannot be distinguished at the scale of

the drawing from those of the complete problem (12).

In order to illustrate our Remark 1, let us now use the reduced

model (15) as such to solve a problem different from the one that

served to derive it. While keeping all other specifications identical,
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Fig. 2. Reducedorder approximation basis involving the initial condition and the

eigenvectors corresponding to the three largest eigenvalues.
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Fig. 3. Global (continuous line) versus reducedorder (symbols) model solutions.

we now impose instead of (13) a substantially different boundary

heat source:

q(t) =







t

20
t ≤ 20

t − 30

5
t > 20

. (16)

The solution of the reduced model is compared to that of the com

plete problem in Fig. 4. Even though the reduced approximation

basis functions are those obtained from the thermal model related

to the boundary condition (13), the reduced model yields a very

accurate representation of the solution of this rather different prob

lem.

2.4. Discussion

The above example illustrates the significant value of model

reduction. Of course, one would ideally want to be able to build

a reducedorder approximation a priori, i.e. without relying on the

knowledge of the (approximate) solution of the complete prob

lem. One would then want to be able to assess the accuracy of

the reducedorder solution and, if necessary, to enrich the reduced

approximation basis in order to improve accuracy (see e.g. our ear
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Fig. 4. Global (continuous line) versus reducedorder (symbols) model solutions for

the source term (16). The reducedorder approximation basis is that obtained from

the solution of a different thermal problem, with the source term (13).



lier studies [2,5,39]). The proper generalized decomposition (PGD),

which we describe in general terms in the next section, is an effi

cient answer to these questions.

The above POD results also tell us that an accurate approximate

solution can often be written as a separated representation involv

ing but few terms. Indeed, when the field evolves smoothly, the

magnitude of the (ordered) eigenvalues ˛i decreases very fast with

increasing index i, and the evolution of the field can be approxi

mated from a reduced number of modes. Thus, if we define a cutoff

value � (e.g. � = 10−8 · ˛1, ˛1 being the highest eigenvalue), only a

small number N of modes are retained (N < < M) such that ˛i ≥ �, for

i ≤ N, and ˛i < �, for i > N. Thus, one can write:

u(x, t) ≈
N
∑

i=1

�i(x) · Ti(t) ≡
N
∑

i=1

Xi(x) · Ti(t). (17)

For the sake of clarity, the space modes �i(x) will be denoted in

the sequel as Xi(x). Eq. (17) represents a natural separated repre

sentation, also known as finite sum decomposition. The solution

that depends on space and time can be approximated as a sum of

a small number of functional products, with one of the functions

depending on the space coordinates and the other one on time. Use

of separated representations like (17) is at the heart of the PGD.

Thus, we expect that the transient solution of numerous prob

lems of interest can be expressed using a very reduced number of

functional products involving each a function of time and a function

of space. Ideally, the functions involved in these functional products

should be determined simultaneously by applying an appropriate

algorithm to guarantee robustness and optimality; in view of the

nonlinear nature of the separated representation, this will require

a suitable iterative process.

To our knowledge, the unique precedent to the PGD algorithm

for building a separated space–time representation is the socalled

radial approximation introduced by Ladeveze ([23,24,31]) in the

context of computational solid mechanics.

In terms of performance, the verdict is simply impressive. Con

sider a typical transient problem defined in 3 D physical space.

Use of a standard incremental strategy with P time steps (P is

of order of millions in industrial applications) requires the solu

tion of P threedimensional problems. By contrast, using the

spacetime separated representation (17), we must solve N · m

threedimensional problems for computing the space functions

Xi(x), and N · m onedimensional problems for computing the time

functions Ti(t). Here, m is the number of nonlinear iterations

needed for computing each term of the finite sum. For many prob

lems of practical interest, we find that N · m is of order 100. The

computing time savings afforded by the separated representation

can thus reach many orders of magnitude.

3. The proper generalized decomposition at a glance

Consider a problem defined in a space of dimension d for the

unknown field u(x1, . . ., xd). Here, the coordinates xi denote any

usual coordinate (scalar or vectorial) related to physical space,

time, or conformation space, for example, but they could also

include problem parameters such as boundary conditions or mate

rial parameters. We seek a solution for (x1, . . ., xd) ∈ ˝1 × · · · × ˝d.

The PGD yields an approximate solution in the separated form:

u(x1, . . . , xd) ≈
N
∑

i=1

F1
i (x1) × · · · × Fd

i (xd). (18)

The PGD approximation is thus a sum of N functional products

involving each a number d of functions F
j
i
(xj) that are unknown a

priori. It is constructed by successive enrichment, whereby each

functional product is determined in sequence. At a particular

enrichment step n + 1, the functions F
j
i
(xj) are known for i ≤ n from

the previous steps, and one must compute the new product involv

ing the d unknown functions F
j
n+1

(xj). This is achieved by invoking

the weak form of the problem under consideration. The result

ing discrete system is nonlinear, which implies that iterations are

needed at each enrichment step. A lowdimensional problem can

thus be defined in ˝j for each of the d functions F
j
n+1

(xj).

If M nodes are used to discretize each coordinate, the total num

ber of PGD unknowns is N × M × d instead of the Md degrees of

freedom involved in standard meshbased discretizations. More

over, all numerical experiments carried out to date with the PGD

show that the number of terms N required to obtain an accurate

solution is not a function of the problem dimension d, but it rather

depends on the regularity of the exact solution. The PGD thus avoids

the exponential complexity with respect to the problem dimension.

In many applications studied to date, N is found to be as small as

a few tens, and in all cases the approximation converges towards

the solution associated with the complete tensor product of the

approximation bases considered in each ˝j. Thus, we can be confi

dent about the generality of the separated representation (18), but

its optimality depends on the solution regularity. When an exact

solution of a particular problem can be represented with enough

accuracy by a reduced number of functional products, the PGD

approximation is optimal. If the solution is a nonseparable function

for the particular coordinate system used, the PGD solver proceeds

to enrich the approximation until including all the elements of the

functional space, i.e. the Md functions involved in the full tensor

product of the approximation bases in each ˝j.

Let us now consider in more detail a specific example.

4. Proper generalized decomposition of a generic

parametric model

In this section, we illustrate the PGD by considering the follow

ing parametric heat transfer equation:

∂u

∂t
− k1u − f = 0, (19)

with homogeneous initial and boundary conditions. Enforcement

of nonhomogeneous initial and boundary conditions is discussed

in [20,17].

Here (x, t, k) ∈ ˝ × I × ℑ, and the source term f is assumed con

stant. The conductivity k is viewed as a new coordinate defined in

the interval ℑ. Thus, instead of solving the thermal model for differ

ent discrete values of the conductivity parameter, we wish to solve

at once a more general problem, the price to pay being an increase

of the problem dimensionality. However, as the complexity of the

PGD scales only linearly (and not exponentially) with the space

dimension, consideration of the conductivity as a new coordinate

still allows one to efficiently obtain an accurate solution.

The weak form related to Eq. (19) reads:
∫

˝×I×ℑ
u∗ ·

(

∂u

∂t
− k1u − f

)

dx dt dk = 0, (20)

for all test functions u∗ selected in an appropriate functional space.

The PGD solution is sought in the form:

u (x, t, k) ≈
N
∑

i=1

Xi (x) · Ti (t) · Ki (k) . (21)

At enrichment step n of the PGD algorithm, the following approxi

mation is already known:

un (x, t, k) =
n
∑

i=1

Xi (x) · Ti (t) · Ki (k) . (22)



We wish to compute the next functional product Xn+1 (x) · Tn+1 (t) ·
Kn+1 (k), which we write as R (x) · S (t) · W (k) for notational simplic

ity.

Thus, the solution at enrichment step n + 1 reads

un+1 = un + R (x) · S (t) · W (k) . (23)

We propose the simplest choice for the test functions u∗ used in Eq.

(20):

u∗ = R∗ (x) · S (t) · W (k) + R (x) · S∗ (t) · W (k) + R (x) · S (t) · W∗ (k) .

(24)

With the trial and test functions given by Eqs. (23) and (24) respec

tively, Eq. (20) is a nonlinear problem that must be solved by

means of a suitable iterative scheme. In our earlier papers [3,4],

we used Newton’s method. Simpler linearization strategies can

also be applied, however. The simplest one is an alternating direc

tion, fixedpoint algorithm, which was found remarkably robust

in the present context. Each iteration consists of three steps that

are repeated until reaching convergence, that is, until reaching the

fixed point. The first step assumes S (t) and W (k) known from the

previous iteration and compute an update for R (x) (in this case the

test function reduces to R∗ (x) · S (t) · W (k)). From the justupdated

R (x) and the previouslyused W (k), we can update S (t) (with

u∗ = R (x) · S∗ (t) · W (k)). Finally, from the justcomputed R (x) and

S (t), we update W (k) (with u∗ = R (x) · S (t) · W∗ (k)). This iterative

procedure continues until reaching convergence. The converged

functions R (x), S (t) and W (k) yield the new functional product

of the current enrichment step: Xn+1 (x) = R (x), Tn+1 (t) = S (t) and

Kn+1 (k) = W (k). The explicit form of these operations is described

below.

4.1. Computing R (x) from S (t) and W (k)

We consider the weak form of Eq. (19):

∫

˝×I×ℑ
u∗

(

∂u

∂t
− k1u − f

)

dx dt dk = 0. (25)

Here, the trial function is given by

u (x, t, k) =
n
∑

i=1

Xi (x) · Ti (t) · Ki (k) + R (x) · S (t) · W (k) . (26)

Since S and W are known from the previous iteration, the test func

tion reads

u∗ (x, t, k) = R∗ (x) · S (t) · W (k) . (27)

Introducing (26) and (27) into (25) yields

∫

˝×I×ℑ
R∗ · S · W ·

(

R ·
∂S

∂t
· W − k · 1R · S · W

)

dx dt dk

= −
∫

˝×I×ℑ
R∗ · S · W · Rn dx dt dk, (28)

where Rn is the residual at enrichment step n:

Rn =
n
∑

i=1

Xi ·
∂Ti

∂t
· Ki −

n
∑

i=1

k · 1Xi · Ti · Ki − f. (29)

Since all functions involving time and conductivity have been deter

mined, we can integrate Eq. (28) over I × ℑ. With the following

notations,




































w1 =
∫

ℑ
W2 dk s1 =

∫

I
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R2 dx
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∫
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∫
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∫
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∫
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∫

I

S dt r3 =
∫
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∫
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4
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∫

I

S ·
dTi

dt
dt ri
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=
∫

˝
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wi
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∫

ℑ
kW · Ki dk si
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∫

I
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∫

˝

R · Xi dx
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(30)

Eq. (28) reduces to
∫

˝

R∗ · (w1 · s2 · R − w2 · s1 · 1R) dx

= −
∫

˝

R∗ ·

(

n
∑

i=1

wi
4 · si

4 · Xi −
n
∑

i=1

wi
5 · si

5 · 1Xi − w3 · s3 · f

)

dx.

(31)

Eq. (31) defines in weak form an elliptic steadystate boundary

value problem for the unknown function R that can be solved by

using any suitable discretization technique (finite elements, finite

volumes, . . .). Another possibility consists in coming back to the

strong form of Eq. (31):

w1 · s2 · R − w2 · s1 · 1R

= −

(

n
∑

i=1

wi
4 · si

4 · Xi −
n
∑

i=1

wi
5 · si

5 · 1Xi − w3 · s3 · f

)

, (32)

that can be solved by using any classical collocation technique

(finite differences, SPH, . . .).

4.2. Computing S (t) from R (x) and W (k)

In the present case, the test function is written as

u∗ (x, t, k) = S∗ (t) · R (x) · W (k) , (33)

and the weak form becomes
∫

˝×I×ℑ
S∗ · R · W ·

(

R ·
∂S

∂t
· W − k · 1R · S · W

)

dx dt dk

= −
∫

˝×I×ℑ
S∗ · R · W · Rn dx dt dk.

(34)

Integrating over ˝ × ℑ, one obtains
∫

I

S∗ ·
(

w1 · r1 ·
dS

dt
− w2 · r2 · S

)

dt

= −
∫

I

S∗ ·

(

n
∑

i=1

wi
4 · ri

5 ·
dTi

dt
−

n
∑

i=1

wi
5 · ri

4 · Ti − w3 · r3 · f

)

dt.

(35)

Eq. (35) represents the weak form of the ODE defining the time

evolution of the field S that can be solved by using any stabilized dis

cretization technique (SU, Discontinuous Galerkin, . . .). The strong

form of Eq. (35) reads

w1 · r1 ·
dS

dt
− w2 · r2 · S



= −

(

n
∑

i=1

wi
4 · ri

5 ·
dTi

dt
−

n
∑

i=1

wi
5 · ri

4 · Ti − w3 · r3 · f

)

. (36)

Eq. (36) can be solved by using backward finite differences, or

higher order Runge–Kutta schemes, among many other possibil

ities.

4.3. Computing W (k) from R (x) and S (t)

The test function is now given by

u∗ (x, t, k) = W∗ (k) · R (x) · S (t) , (37)

and the weak form becomes

∫

˝×I×ℑ
W∗ · R · S ·

(

R ·
∂S

∂t
· W − k · 1R · S · W

)

dx dt dk

= −
∫

˝×I×ℑ
W∗ · R · S · Rn dx dt dk. (38)

Integration over ˝ × I yields

∫

ℑ
W∗ · (r1 · s2 · W − r2 · s1 · k · W) dk

= −
∫

ℑ
W∗ ·

(

n
∑

i=1

ri
5 · si

4 · Ki −
n
∑

i=1

ri
4 · si

5 · k · Ki − r3 · s3 · f

)

dk.

(39)

Eq. (39) does not involve any differential operator. The correspond

ing strong form reads

(r1 · s2 − r2 · s1 · k) · W

= −

(

n
∑

i=1

(

ri
5 · si

4 − ri
4 · si

5 · k
)

· Ki − r3 · s3 · f

)

. (40)

This is an algebraic problem, which is hardly a surprise since the

original Eq. (19) does not contain derivatives with respect to the

parameter k. Introduction of the parameter k as additional model

coordinate does not increase the cost of a particular enrichment

step. It does however necessitate more enrichment steps, i.e. more

terms (higher N) in the decomposition (21).

We have seen that at each enrichment step the construction of

the new functional product in Eq. (21) requires nonlinear itera

tions. If mi denotes the number of iterations needed at enrichment

step i, the total number of iterations involved in the construction of

the PGD approximation is m =
∑i=N

i=1
mi. In the above example, the

entire procedure thus involves the solution of m threedimensional

problems for the functions Xi(x), m onedimensional problems for

the functions Ti(t) and m algebraic systems for the functions Ki(k). In

general, m rarely exceeds 10. The number N of functional products

needed to approximate the solution with enough accuracy depends

on the solution regularity. All numerical experiments carried to

date reveal that N ranges between a few tens and one hundred.

Thus, we can conclude that the complexity of the PGD procedure to

compute the approximation (21) is of some tens of 3 D steadystate

problems (the cost related to the 1 D and algebraic problems being

negligible with respect to the 3 D problems). In a classical approach,

one must solve for each particular value of the parameter k a 3 D

problem at each time step. In usual applications, this often implies

the computation of several millions of 3 D solutions. Clearly, the

CPU time savings by applying the PGD can be of several orders of

magnitude.

5. Pushing forward simulation limits with the PGD

Before considering in some detail a number of applications of

the PGD, let us briefly revisit the four challenges discussed in the

introductory section.

(1) Highdimensional problems are readily handled by invoking

the PGD separated representation:

u(x1, . . . , xd) ≈
N
∑

i=1

F1
i (x1) × · · · × Fd

i (xd), (41)

with (x1, . . ., xd) ∈ ˝1 × · · · × ˝d. The PGD procedure is identical

to that described in the previous section. At each enrichment

step, introduction of the separated representation into the

problem’s weak form and use of nonlinear iterations yield the

equations required for computing each one of the functions

F
j
i
(xj) in their respective, lowdimensional domain ˝j.

This strategy was successfully applied in our studies of

the kinetic theory description of complex fluids. A multidi

mensional separated representation of the linear steadystate

FokkerPlanck equation was introduced in the seminal work [3]

and later in [27], further extended to transient simulations in

[4] and nonlinear FokkerPlanck equations in [29]. In [30,35],

we considered the solution of FokkerPlanck equations in com

plex flows, where space, time and conformation coordinates

coexist. We have also applied the same approach for solving

the Schrödinger equation [16], the chemical master equation

[19] or kinetic theory models formulated within the Brownian

configurations fields framework [15].

(2) Efficient solvers for transient problems can be defined by apply

ing a space–time separation:

u(x, t) ≈
N
∑

i=1

Xi(x) · Ti(t). (42)

The constructor of that separated representation was illus

trated in the previous section (it suffices to ignore the existence

of the parametric extracoordinate). We cited previously the

pioneering works of Ladeveze’s team in the field of structural

mechanics. Spacetime separated representations were also

considered in the context of computational rheology in [6]. In

[18], they were applied to the multiscale coupling of diffusion

and kinetic models endowed with very different characteristic

times.

(3) The fully threedimensional solution of models defined in

degenerate domains is also an appealing field of application of

the PGD. Consider the unknown field u(x) defined in a domain

�. Two approaches come to mind:

Complete decomposition:

u(x, t) ≈
N
∑

i=1

Xi(x) · Yi(y) · Zi(z). (43)

This strategy is particularly suitable for separable domains, i.e.

� = ˝x × ˝y × ˝z. For general domains, embedding � into a

larger separable domain ˝x × ˝y × ˝z can also be done, as

described in [20].

Platetype decomposition:

u(x, t) ≈
N
∑

i=1

Xi(x, y) · Zi(z). (44)

This strategy is particularly suitable when � = ˝ × I, with ˝ ⊂
R2 and I ⊂ R. More complex domains (e.g. plates with a varying



Fig. 5. MBS model consisting of 10 FENE springs in a twodimensional physical space. First reduced approximation functions: (topleft) first spring; (topright) second spring;

(middleleft) third spring; (middleright) fourth spring and (bottom) central spring.

thickness) can be treated by using an appropriate change of

variable.

(4) Finally, for applications requiring many solutions of a partic

ular model, it suffices to introduce all sources of variability

as extracoordinates. The solution of the resulting parametric

multidimensional model is then sought in the separated form

u(x, t, p1, . . . , pQ ) ≈
N
∑

i=1

Xi(x) · Ti(t) · P1
i (p1)· · ·PQ

i
(pQ ), (45)

where the pi s denote the different problem parameters such as

material parameters, boundary conditions, applied loads, initial

conditions, and geometrical parameters [36].

In the remaining sections, we illustrate each of these problem

categories.

6. Solution of the multidimensional FokkerPlanck

equation

6.1. Multibeadspring FENE model of dilute polymer solutions

The MBS FENE chain consists of d + 1 beads connected by d

nonlinear entropic springs. For homogeneous flows, the molecu

lar conformations are described by a probability distribution 	 (q1,



Fig. 6. Flow induced aggregation/disaggregation mechanisms.

. . ., qd, t) governed by the FokkerPlanck equation

∂	 (q1, . . . , qd, t)

∂t
= −

d
∑

k=1

(

∂

∂qk

(

q̇k · 	 (q1, . . . , qd, t)
)

)

, (46)

with a suitable governing equation for q̇k [11]. In order to

demonstrate the applicability of the PGD, we considered in [3]

steadystate, simple shear flow calculations for chains with 10

springs having 2D orientation. The distribution function, thus

defined in a 20 D space, is sought in the separated form

	 (q1, . . . , q10) ≈
N
∑

j=1

F1
j (q1) × · · · × F10

j (q10). (47)

A mesh consisting of 104 nodes was used for approximating each

function Fk
j

(qk). A simple shear flow was applied (We =
√

2) and

3 terms in the separated representation were found sufficient

to accurately describe the steadystate distribution function. We

depict in Fig. 5 the functions defining the first mode, i.e. functions

Fk
1

(qk), k = 1, . . . , 5. We notice that the results are sharper at the

center of the chain, indicating that the central springs are more

stretched than the ones located near the chain ends.

This simulation implied 10 × 104 = 105 degrees of freedom (10

spring connectors whose approximation functions were defined

using a mesh of 104 nodes). A standard finite element solution

would have required of the order of (104)
10 = 1040 degrees of free

dom (nodes) for computing an equivalent solution.

6.2. Rodlike aggregating suspension in complex flows

We consider a suspension of rodlike particles which can floccu

late to create aggregates. These aggregates are continuously broken

by the flow. Thus, aggregation and disaggregation mechanisms

coexist and two populations of particles can be identified: the one

related to free rods (pendant population) and the one associated

with the aggregated rods (active population). The model is inspired

from the those developed for associative polymers. Fig. 6 depicts

both populations and the flow induced aggregation/disaggregation.

The kinetic theory description of such systems contains two cou

pled FokkerPlanck equations for the orientation distribution 	 (x,

t, p) and ˚(x, t, p) of the active and pendant rods, respectively [30]:

D	

Dt
= −

∂

∂p

(

ṗ	
)

+ Dr1
∂2	

∂p2
− Vd	 + Vc˚, (48)

D˚

Dt
= −

∂

∂p

(

ṗ˚
)

+ Dr2
∂2˚

∂p2
+ Vd	 − Vc˚. (49)

Here, ṗ is the flow induced orientation modeled by Jeffery’s equa

tion, Dr1 and Dr2 are the rotary diffusion coefficient of both

populations taking into account Brownian effects and hydrody

namic interactions, and finally Vd and Vc are the velocity of

destruction and construction of the active population, respectively.

Note that a material derivative acts on the distribution functions,

since we are dealing with complex flows.

We consider the flow in a converging channel. The steadystate

flow kinematics (assumed undisturbed by the presence of the sus

pended particles) were computed by solving the Stokes equations.

The FokkerPlanck equations were integrated along particular flow

streamlines. The separated representation of both orientation dis

tribution functions reads:

(

	st(s, p)

˚st(s, p)

)

≈
N
∑

i=1

(

Pst,	
i

(p) · Sst,	
i

(s)

Pst,˚
i

(p) · Sst,˚
i

(s)

)

, (50)

where s denotes the curvilinear coordinate along each individual

streamline “st”. For additional details, see [30].

Fig. 7 depicts the resulting orientation distribution of both pop

ulations at particular points along individual flow streamlines. The

orientation distribution is directly depicted on the unit surface, and

the color scheme indicates the intensity of the orientation in each

direction.

7. Spacetime separation for efficient transient simulations

As an illustration of the efficiency of the PGD to address transient

problems, we consider the computation of the linear viscoelas

tic moduli G′ and G′′ via the direct solution of the FokkerPlanck

equation for FENE dumbbells [6]. Thus, several smallamplitude

oscillatory flows must be solved for a wide range of frequencies

covering several decades. For each value of the applied frequency,

the flow kinematics is given by

∇v =

(

0 g sin(ωt)

0 0

)

, (51)

where g is the maximum shear rate and ω the applied frequency.

This constitutes a challenge for standard incremental numeri

cal methods: many transient simulations are needed, and, for each

frequency, the transient simulation must be performed over a time

interval large enough to ensure the response stabilization. More

over, the higher the frequency, the shorter the time step.

Applying the PGD, we compute the probability distribution

function in the separated form

	 (q, t) ≈
N
∑

i=1

Gi(q) · Fi(t). (52)

We use 1000 time steps uniformly distributed over 10 periods of

oscillation and about 3000 nodes in ˝q. Fig. 8 illustrates the three

most significant conformation modes Gi(q), i = 1, 2, 3, the first few

time modes Fi(t), the resulting probability distribution function

(from which the probability distribution function at equilibrium

	 0(q) was removed) at the final time (t = Tmax) and the shear stress

for ω = 2.55 and g = 0.1.

In this application, the PGD yields a significant reduction in CPU

time (of order of hundreds) relative to standard incremental meth

ods. The separated representation allows one to treat one or more

periods using almost the same number of functions and conse

quently the same CPU time. The CPU time of a standard incremental

method, however, would grow linearly with the number of periods.

The advantage of using the PGD lies in the fact that consideration

of a very fine discretization of the time axis does not affect sig

nificantly the overall simulation time since the cost of computing

the functions of time Fi(t) (solution of ordinary differential equa

tions) is negligible relative to that for the conformation dependent

functions Gi(q) (solution of partial differential equations).



Fig. 7. Orientation distribution of active and pendant populations in a contraction flow. The orientation distribution is represented on the unit sphere at various positions

along individual streamlines.

8. Threedimensional simulation of resin transfer

moulding

8.1. Governing equations and PGD approach

We now illustrate in some detail the application of the PGD to

the modeling of resin transfer moulding processes. We consider the

flow within a porous medium in a plate domain � = ˝ × I with

˝ ⊂ R2 and I = [0, H] ⊂ R. The governing equation is obtained

by combining Darcy’s law, which relates the fluid velocity to the

pressure gradient,

v = −K · ∇p, (53)

and the incompressibility constraint,

∇ · v = 0. (54)

Introduction of Eq. (53) into Eq. (54) yields a single equation for the

pressure field:

∇ · (K · ∇p) = 0. (55)

The mould contains a laminate preform composed of P different

anisotropic plies of thickness h, each one characterized by a per

meability tensor Ki(x, y) that is assumed constant through the ply

thickness. We define a characteristic function

�i(z) =

{

1 zi ≤ z ≤ zi+1,
0 otherwise,

(56)

where zi = (i − 1) · h is the location of ply i in the plate thickness. The

laminate’s permeability is thus given in separated form as follows:

K(x, y, z) =
P
∑

i=1

Ki(x) · �i(z), (57)

where x denotes the inplane coordinates, i.e. x = (x, y) ∈ ˝.



Fig. 8. Small amplitude oscillatory flow with ω = 2.55 and g = 0.1. The three most significant conformation modes are depicted on the left. On the right are represented the

first few time modes (top), the resulting orientation distribution (middle) and the shear stress (bottom).

The weak form of Eq. (55) reads:

∫

�

∇p∗ · (K · ∇p) d� = 0, (58)

for all test functions p∗ selected in an appropriate functional space.

Dirichlet boundary conditions are imposed for the pressure at the

inlet and outlet of the flow domain, while zero flux (i.e. no flow)

is imposed elsewhere as a weak boundary condition. We seek an

approximate solution p(x, y, z) in the PGD form:

p(x, z) ≈
N
∑

j=1

Xj(x) · Zj(z). (59)

The PGD algorithm then proceeds as follows. Assume that the first

n functional products have been computed, i.e.

pn(x, z) =
n
∑

j=1

Xj(x) · Zj(z), (60)

is a known quantity. We must now perform an enrichment step to

obtain

pn+1(x, z) = pn(x, z) + R(x) · S(z). (61)

The test function involved in the weak form is given by:

p∗(x, z) = R∗(x) · S(z) + R(x) · S∗(z). (62)

Introducing Eqs. (61) and (62) into Eq. (58), we obtain

∫

�

((

∇̃R∗ · S

R∗ ·
dS

dz

)

+

(

∇̃R · S∗

R ·
dS∗

dz

))

·

(

K ·

(

∇̃R · S

R ·
dS

dz

))

d�

= −
∫

�

((

∇̃R∗ · S

R∗ ·
dS

dz

)

+

(

∇̃R · S∗

R ·
dS∗

dz

))

· Qn d�, (63)

where ∇̃ denotes the plane component of the gradient operator, i.e.

∇̃T
=
(

∂
∂x

, ∂
∂y

)

and Qn is a flux term known at step n:

Qn = K ·
n
∑

j=1

(

∇̃Xj(x) · Zj(z)

Xj(x) ·
dZj(z)

dz

)

. (64)



Fig. 9. Computed pressure field and flow pathlines for a twoply rectangular lami

nate 1 m × 0.2 m × 0.01 m, 1P = 0.05 bar with 45 ◦/− 45◦ orientation.

As discussed previously, each enrichment step of the PGD algorithm

is a nonlinear problem which must be performed by means of a

suitable iterative process. Here, we compute the unknown func

tions R(x) and S(z) by applying an alternating direction fixed point

algorithm. Thus, assuming R(x) known, we compute S(z), and then

we update R(x). The process continues until reaching convergence.

The converged solutions provide the next functional product of the

PGD: R(x) → Xn+1(x) and S(z) → Zn+1(z). The explicit form of these

operations is given below.

8.2. Enrichment step

We now detail the computations yielding the functions R(x) and

S(z).

(1) Computing R(x) from S(z):

When S(z) is known, the test function reduces to:

p∗(x, z) = R∗(x) · S(z), (65)

and the weak form (63) becomes:

∫

�

(

∇̃R∗ · S

R∗ ·
dS

dz

)

·

(

K ·

(

∇̃R · S

R ·
dS

dz

))

d�

= −
∫

�

(

∇̃R∗ · S

R∗ ·
dS

dz

)

· Qn d�. (66)

Now, as all functions involving the z coordinate are known, they can

be integrated over I = [0, H]. Thus, with the following notations:

K =

(

K k

kT �

)

, (67)

with

k =

(

Kxz

Kyz

)

, (68)

Fig. 10. Pressure field and flow trajectories in a complex laminate preform:

0.22 m × 0.18 m × 0.01 m, 1P = 0.05 bar.

and � = Kzz, we define:

Kx =







∫

I

K · S2 dz

∫

I

k ·
dS

dz
· S dz

∫

I

kT ·
dS

dz
· S dz

∫

I

� ·
(

dS

dz

)2

dz







, (69)

and

(Qx)
n

=
n
∑

j=1

















∫

I

K · S · Zj dz

∫

I

k ·
dZj

dz
· S dz

∫

I

kT ·
dS

dz
· Zj dz

∫

I

� ·
dS

dz
·

Zj

dz
dz









·

(

∇̃Xj(x)

Xj(x)

)









.

(70)

Finally, we can write Eq. (66) as follows:
∫

˝

(

∇̃R∗

R∗

)

·

(

Kx ·

(

∇̃R
R

))

d˝ = −
∫

˝

(

∇̃R∗

R∗

)

· (Qx)
n

d˝.

(71)

This last equation defines an elliptic 2D problem (in weak form) for

the unknown function R defined over ˝, i.e. the midplane of the

preform.

(2) Computing S(z) from R(x):

When R(x) is known the test function reads:

p∗(x, z) = R(x) · S∗(z), (72)

and the weak form (63) reduces to:

∫

�

(

∇̃R · S∗

R ·
dS∗

dz

)

·

(

K ·

(

∇̃R · S

R ·
dS

dz

))

d�

= −
∫

�

(

∇̃R · S∗

R ·
dS∗

dz

)

· Qn d�. (73)

Since all functions involving the inplane coordinates x = (x, y) are

known, they can be integrated over ˝. Thus, using the previous

notation, we define:

Kz =







∫

˝

(∇̃R) · (K · ∇̃R) d˝

∫

˝

(∇̃R) · k · R d˝
∫

˝

(∇̃R) · k · R d˝

∫

˝

� · R2 d˝







, (74)

and

(Qz)
n

=

n
∑

j=1













∫

˝

(∇̃R) · (K · ∇̃Xj) d˝

∫

˝

(∇̃R) · k · Xj d˝

∫

˝

(∇̃Xj) · k · R d˝

∫

˝

� · Xj · R d˝







·

(

Zj(z)
dZj

dz
(z)

)







.(75)

We can thus write Eq. (73) in the form

∫

I

(

S∗

dS∗

dz

)

·

(

Kz ·

(

S
dS

dz

))

dz = −
∫

I

(

S∗

dS∗

dz

)

· (Qz)
n

dz. (76)

This equation defines a onedimensional problem (in weak form)

for the unknown function S.

8.3. Numerical example

Traditionally, the flow of a viscous fluid through a porous pre

form within a planar mould is assumed twodimensional in order

to make possible realistic simulations of industrial interest.



Fig. 11. Solution of the parametric FokkerPlanck equation for short fibers: functions involved in the four first terms of the PGD, namely F1
1

(p) to F4
1

(p) (top) and F1
2

(G) to

F4
2

(G) (bottom).

When the mould consists of a laminate composed of several

anisotropic plies with different principal directions of anisotropy,

the definition of an equivalent permeability tensor representing

the whole laminated is an important issue. One would expect that

an appropriate equivalent permeability tensor could be defined by

averaging through the thickness the permeability of the different

plies that compose the laminate. In order to assess the validity of

this approach, we consider a rectangular laminate composed of

two unidirectional plies. The plies are identical but have different

orientation.

In the principal anisotropy directions, the inplane permeability

tensor of each ply is given by

K =

(

K1 0

0 K2

)

. (77)

We adopt a coordinate system such that the xcoordinate axis is

aligned in the direction of the longest plate edge, the ycoordinate

defines the plate width and the zcoordinate its thickness. The first

ply is turned an angle � with respect to the xaxis, whereas the

second ply is oriented at an angle −�. Thus, their inplane perme

abilities are given by

K1 = QT
(�) K Q(�), (78)

and

K2 = QT
(−�) K Q(−�), (79)

where Q(�) and Q(−�) are rotation tensors.

Defining the equivalent inplane permeability of the laminate K̃

from a simple throughthethickness average of ply permeabilities,

one obtains

K̃ =

(

K1 · cos2(�) + K2 · sin2(�) 0

0 K2 · cos2(�) + K1 · sin2(�)

)

. (80)

Now, if we apply a pressure drop 1P between the inlet (x = 0) and

outlet (x = L), the pressure distribution is strictly linear and the asso

ciated velocity field is predicted to be uniform and unidirectional:

v(x, y, z) =





−K̃ ·
1P

L
0

0



 . (81)
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Fig. 12. Convergence and CPU time as a function of the number N of terms in the PGD approximation. The error is defined as the residual L2 norm.

Thus, one would expect fluid trajectories parallel to the xaxis and

a residence time tR such that L = ||v|| · tR.

The results of the threedimensional PGD simulation reveal a

very different situation, which shows that use of an average per

meability is not appropriate. Fig. 9 depicts the pressure field as well

as some flow pathlines obtained in the 3D simulation. The flow is

clearly far from unidirectional and uniform.

The PGD can be used to analyze more complex cases. Fig. 10

depicts the pressure fields and flow pathlines in a plate with

cylindrical obstacles composed of 51 plies. The predicted flow tra

jectories are quite complex indeed. Consideration of such a large

number of plies has no significant impact on the overall PGD com

puting time, in view of the relatively low computing cost of the

onedimensional problems defined through the plate thickness. In

order to compute an equivalent solution by applying the finite ele

ment method, one should use about two million nodes. The PGD

solution is computed in a few minutes on a laptop.

9. Parametric modeling in computational rheometry

In this final illustration, we consider the evolution of the dis

tribution 	 of orientation {p} for a suspension of short fibres.

The corresponding steadystate FokkerPlanck equation reads in

dimensionless form

∂

∂p

(

ṗ	 (p, t)
)

−
∂

∂p

(

∂	 (p, t)

∂p

)

= 0, (82)

with a suitable governing equation relating ṗ to the applied flow

kinematics [11].

We study simple shear flow and wish to compute the solution at

once for any value of the applied dimensionless shear rate G. With

the PGD, it suffices to view G as an additional coordinate. We seek

an approximation in the separated form:

	 (p, G) ≈
N
∑

i=1

F i
1(p ) · F i

2(G). (83)

Thus, instead of solving a problem defined on the unit sphere for

each G within a discrete set of values, we solve at once a single

problem defined in a higherdimensional space that now includes

the unit sphere for {p} as well as the continuous interval of values

for the applied shear rate G. With the PGD, the resulting increase in

model dimensionality has a negligible impact on the overall com

putational effort [9].

Fig. 11 depicts the four most relevant functions of orientation,

F1
1

(p) to F4
1

(p), and strain rate, F1
2

(G) to F4
2

(G).

Finally, Fig. 12 shows the evolution of the numerical error

and total computing time on a laptop as a function of the

number N of PGD terms. The error is defined as the L2

norm of the residual of the FokkerPlanck equation in strong

form.

10. Conclusions

In this review paper, we have revisited the proper generalized

decomposition, its foundations, and some exciting applications.

By means of selected illustrations, we have demonstrated that

the PGD separated representations are particularly suitable for

addressing models defined in highdimensional spaces. The PGD

yields efficient, nonincremental time integration strategies of

transient problems. It allows for the fast computation of fully 3

D solutions of problems defined in degenerate plate or shelllike

domains typically encountered in materials and process engineer

ing applications. Finally, separated representations make possible

the increase of the problem dimensionality by introducing all

sources of variability as extracoordinates.

By avoiding the exponential complexity of standard gridbased

discretization techniques, the PGD circumvents the curse of dimen

sionality in a variety of problems. With the PGD, the problem’s

usual coordinates (e.g. space, time, conformation), but also model

parameters, boundary conditions, and other sources of variability

can be viewed globally as coordinates of a highdimensional space

wherein an approximate solution can efficiently be computed at

once.

The PGD is a recent technique and its mathematical foundations

remain for the most part to be established rigorously. Theoretical

results on the numerical analysis of the PGD are becoming avail

able [8,26]. Empirical observations regarding the limitations of the

PGD can be summarised as follows. We have not yet encountered

a problem for which the PGD would behave less well than the cor

responding finite element solution framework, but on the other

hand, the PGD has been found extremely efficient in a wide variety

of problems. When the solution is nonseparable, irrespective of the

nature (e.g. symmetric or not) of the underlying differential opera

tor, the number of terms in the PGD expansion does grow in order

to span the full tensor basis of approximation functions, and the

PGD then offers no particular advantage over classical techniques.

In our opinion, PGDbased discretization techniques consti

tute a new paradigm in scientific computing. The way is open for

innovative algorithms in simulation, parametric modeling, inverse

identification, optimization and control of highdimensional sys

tems. Application of the PGD in computational rheology and



nonNewtonian fluid mechanics has been shown in this review

paper to have great potential indeed.
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