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Abstract: The paper focuses on the robust identification of geometrical and elastostatic parameters of 
robotic manipulator. The main attention is paid to the efficiency improvement of the identification 
algorithm. To increase the identification accuracy, it is proposed to apply the weighted least square 
technique that employs a new algorithm for assigning of the weighting coefficients. The latter allows 
taking into account variation of the measurement system precision in different directions and throughout 
the robot workspace. The advantages of the proposed approach are illustrated by an application example 
that deals with the elasto-static calibration of industrial robot.   
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1. INTRODUCTION 

The problem of robot calibration is in the focus of the 
research community for many years (Stone 1987, 
Hollerbach 1989, Elatta 2004). However, there is a very 
limited number of works that directly address the issue of the 
identification accuracy and reduction of the calibration errors 
(Mooring 1991, Sun 2008, Hollerbach 2008). In general, 
there exist two main methods to improve the identification 
accuracy without increasing the number of experiments. The 
first of them consists in optimization of the manipulator 
measurement configuration used for the calibration 
experiments. The second method deals with proper tuning of 
the identification algorithms used for estimation of the 
manipulator parameters (fine choosing of the weighting 
coefficients, for instant). As follows from the literature 
analysis, the first method has been studied in a number of 
papers (Khalil 1991, Borm 1991, Daney 2002), while the 
second one received less attention in robotic research. For 
this reason, taking into account particularities of the 
measurement system used in our experiments, this paper 
focuses on the enhancement of the second method, which 
looks rather promising here.  

To identify the desired parameters, most of the robot 
calibration procedure employ the ordinary least-square 
technique, where all identification equations are treated 
similarly, with the same weights. This approach perfectly 
suits to the measurement systems that provide roughly the 
same precision in all directions and in all workspace points. 
Mathematically, it corresponds to the i.i.d.-hypothesis 
concerning the measurement noise (i.e. to the assumption that 
all measurement errors are unbiased, independent and 
identically distributed). However, in this study, at least one of 
these assumptions is violated because the precision of the 
laser-tracker used in the calibration experiments essentially 

depends on the direction and the target marker location in the 
manipulator workspace.  

To overcome this difficulty, the weighted least-square 
technique can be applied. As known from literature, for the 
linear regression it gives rather good improvement and allows 
essentially reducing the measurement errors impact. It is 
evident that for the robotic calibration problem, similar 
benefits can be gained, but the weighting coefficient selection 
is non-trivial here because of the high non-linearity of the 
equations describing the robotic manipulator.  

To address this problem, the remainder of this paper is 
organized as follows. Section 2 defines the research problem 
and also presents some experimental data concerning 
statistical properties of the measurement errors. In Sections 3, 
the identification algorithm is presented that is based on the 
weighted least-square. Section 4 deals with selection of the 
weighting coefficients that ensure robustness of the 
identification algorithm with respect to the measurement 
noise. Section 5 presents an application example, which 
illustrates benefits of the proposed approach. And finally, 
Section 6 summarizes the main contributions of the paper.  

 

2. PROBLEM STATEMENT 

In robotics, the calibration procedure can be treated as the 
best fitting of the experimental data using corresponding 
manipulator model  

   0arg min ( ,, , , , ii if  k p L k pΠqΠ , )iF  (1) 

which describes its geometrical and elastostatic behavior 
defined by the known function (.)f  whose parameters 
should be tuned. Here i  is the vector of measurements (the 
Cartesian coordinates of the end-effector target points), the 
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vector L  collects all geometrical parameters, i  is the vector 
of actuated coordinates, the vector  collects errors in 
geometrical parameters, the vector  collects all 
compliances of the manipulator, the vectors  and i  are 
used for elastostatic calibration only and correspond to the 
measurement position without loading and applied external 
loading respectively.  

q

0
ip

Π
k

F

In usual engineering practice it is assumed that all 
measurements ( i  and ) are corrupted by the same 
measurement noise 

p 0
ip

2 )(0,N  , which induces errors iε  with 
zero expectation  and diagonal covariance matrix 

i i . However, for many measurement devices 
such as laser-trackers, the precision highly depends on the 
measurement direction and vary throughout the robot 
workspace. In this case, the covariance matrix can be still 
assumed to be diagonal, but with non-equal principle 
elements, i.e. i i xi yi zi

( )i ε

( )TE d

E
·

0
2E ε ε I( )T 

2 2( ,iag 2, )  ε ε , where xi , yi , 

zi  are different and vary from measurement to 
measurement. This phenomena is illustrated by experimental 
data presented in Table 1, which includes dispersions of the 
measurement errors for the Cartesian coordinates x, y, z for 
several measurement configurations used in conventional 
calibration experiments. These results has been obtained by 
processing the measurement data for 15 configurations and 
18 independent experiments for each of them (i.e. by using 
data set which consists of 810 values). It should be noted that 
the manipulator repeatability, which is about 60μm, does not 
have influence on the presented results because of specificity 
of the measurement experiments, where only difference in the 
Cartesian coordinate variations were evaluated (before and 
after applying external loading). As follows from the 
presented results, the measurement error dispersion vary from 
17μm to 153μm and highly depends both on the direction (x, 
y or z) and the end-effector location in the manipulator 
workspace (corresponding to the configurations #1-#15). In 
particular, for the same configuration xi , yi , zi  can differ 
by the factor 5. Besides, from one configuration to another 
corresponding dispersions may differ by 7 times. 

 

Table 1.  Dispersions of measurement errors in 
deflections for different test configurations  

σx, [μm] σy, [μm] σz, [μm] 
Configuration 

mean std mean std mean std 
Conf. #1  150 ±1 64 ±1 33 ±1 
Conf. #2 57 ±4 86 ±8 118 ±15 
Conf. #3 97 ±9 70 ±5 44 ±8 
Conf. #4 28 ±1 19 ±1 35 ±1 
Conf. #5 72 ±3 48 ±4 17 ±1 
Conf. #6 153 ±8 46 ±3 22 ±1 
Conf. #7 112 ±6 66 ±3 53 ±4 
Conf. #8 74 ±5 55 ±3 59 ±1 
Conf. #9 80 ±9 63 ±7 102 ±15 
Conf. #10 69 ±2 73 ±1 79 ±1 
Conf. #11 80 ±3 36 ±1 26 ±3 
Conf. #12 53 ±4 39 ±1 29 ±1 
Conf. #13 26 ±1 29 ±1 29 ±1 
Conf. #14 88 ±4 121 ±1 42 ±1 
Conf. #15 90 ±6 52 ±3 50 ±1 

 

Hence, usual assumptions incorporating in robot calibration 
techniques concerning measurement noise properties should 
be revised. This  motivates the principle goal of the paper that 
is aimed at developing of the robust identification algorithm 
that takes into account variations of xi , yi , zi .  

 

3. IDENTIFICATION ALGORITHM 

In manipulator geometric calibration, the basic expression i 
usually written as follows 

( ) ( ·, )g p
i i i  L qp J Π  (2) 

where g
ip

( )p
iJ

 is the difference between the computed via direct 
geometrical model and measured end-effector position, the 
matrix  is the geometrical Jacobian and the superscript 
'(p)' specifies only components that are related to the robot 
position. It is clearly the linearized model, but it is valid here 
since in practice the geometrical errors are low enough 
compared to the nominal values of the manipulator 
parameters. 

Similarly, for the elastostatic calibration, the basic expression 
can be presented in the form 

( ) ( , , ·)e p
i i ii  L q Fp A k  (3) 

where e
ip  is the vector of the end-effector displacements 

under the loading i , the vector  collects all compliances 
of the manipulator, the matrix 

F k
( )p
iA  defines the mapping 

between the joint compliances k  and the and-effector 
displacements. For the further convenience, both expression 
(2), (3) can be integrated in a single one  

( ) , ·( , )p
i i i i  L q Fp B X  (4) 

where ip  is the vector of measurements and  , X Π k  
the vector of the unknown parameters that should be 
identified, ( )p

iB  is corresponding matrix function.  

Using above defined notations, the calibration can be reduced 
to the following optimization problem 
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1
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that can be solved using the least square approach. It leads to 
the following solution  
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If the measurement noise is Gaussian (as it is assumed in 
conventional calibration techniques) the covariance matrix 
for the parameter estimates  can be computed as follows X̂

  1
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where ( ) ( )

1

p p
i ii B B  is the so-called information matrix.  

However, if the measurement noise varies from configuration 
to configuration the previous expression should be revised. It 

     



 
 

 

can be proved that in general case the covariance matrix is 
expressed as  

   1 1
( ) ( ) ( ) 2 ( ) ( ) ( )ˆcov( ) · · · ·

T T Tp p p p p p
a a a a a a

 
X B B B Σ B B B   (8) 

where the matrix 1 2 3( , ,..., )mdiag   Σ

( )p
iB

 describes the 
statistical properties of the measurement errors and the matrix 

 aggregates all matrices  from expression (4).  ( )p
aB

In order to improve the identification accuracy, it is 
reasonable to modify the objective function (5) and rewrite it 
in the form  
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1
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where 1 2 3  is the matrix of weighting 
coefficients. This leads to slightly different expression for the 
parameter estimates  

( , ..,, . mwd ag w wiW
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where a  aggregates . In this case, the covariance 
matrix can be computed as 
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and, as follows from detailed analysis, the best selection of 
the weighting matrix corresponds to the equation · W Σ I .  

Hence, to assign the weighting coefficients, the measurement 
noise variance should be known. However, in practice, exact 
values of xi , yi , zi  are unknown and the estimates can be 
used only. On the other hand, as follows from practical 
experience, small variations in the weighting coefficients are 
not critical and they do not affect significantly the 
identification accuracy. Nevertheless, if the weights are 
assigned using small number of experiments, the 
identification results can be unpredictably affected. 
Therefore, the problem of computing of the weighting 
coefficients that are able to ensure robustness of the 
identification algorithm is important here and it will be in the 
focus of next Section. 

 

4. ASSIGNING WEIGHTING COEFFICIENTS  

It can be proved that for the linear model, the weighing 
coefficients ensuring the lowest variance of the unknown 
parameters can be computed as  

/iw a i  (12) 

where i  is the standard deviation of the measurement noise 
for the i-th identification expression and the constant  is the 
scalier factor introduced to avoid the problem of the units. 
For example, for the linear regression with a single scalar 
parameter, this approach allows to reduce the variance from 

a

2 22 2/ ( i( )i i

Applying this idea to the problem of robot calibration, it is 
possible to transform the covariance matrix expression (11) 
to the form 

  1
( ) 2 ( )ˆcov( ) · ·

Tp p
a a


X B Σ B  (13) 

where all elements are essentially lower compared to (8). 
Hence the problem of interests is to obtain i  for each 
experiment (and for each coordinate), which will be used for 
computing weighting coefficients .  iw

As it was mentioned before, computing i  is based on a few 
measurement may have the opposite effect - decrease 
identification accuracy. But this remark does not refer to our 
case since we have a group of points (18) in the vicinity of 
single robot configuration which allows us to estimate s.t.d. 
of measurement noise for x-, y- and z-directions with quite 
good precision (see Table 1). It should be noted that obtained 
values of i  are considerably higher than the claimed 
accuracy of the measuring system (10 μm). Nevertheless, this 
value can be used as a normalized coefficient . Besides, 
since in real experiments it is not possible to be insured 
against poor distribution of the measurement errors, in order 
to increase robustness of the identification algorithm, it is 
proposed to introduce steady component in the i

a

  that in 
practice can be assigned by the claimed precision of 
measurement system 0 10 m  . Finally. expression for the 
weights takes a form  

0 0/ ( )·iw i     (14) 

where   is a scalar factor that allows to tune the impact of 

i , 0  is normalization factor that also allows to avoid 
division by zero.  

5. APPLICATION EXAMPLE 

The developed calibration algorithm has been applied to the 
industrial robot KR-270. To take into account the 
compensator influence while remaining approach developed 
for serial robots without compensators (Pashkevich 2011), an 
equivalent virtual spring with non-linear stiffness depending 
on the joint variable 2  is used. Using this idea, it is 
convenient to consider several independent parameters 2i  
corresponding to each value of 2 . So, the set of desired 
parameters 21 22 3 6  can be denoted as the vector 

. This allows us to obtain linear form of the identification 
equations.  

q

,...k

k
q

( , ...), ,k k k
k

To find optimal measurement configurations, the design of 
experiments has been carried out using industry-oriented 
performance measure proposed in (Klimchik 2012) for five 
different angles  that are distributed between the joint 
limits. For each 2  three optimal measurement 
configurations have been found taking into account physical 
constraints that are related to the joint limits and the 
possibility to apply the gravity force (work-cell obstacles and 
safety reasons). The results of the calibration experiment 
design are presented in Table 2.  

2q
q
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Table 2.  Measurement configurations  

Joint angles, [deg] 
q1 q2 q3 q4 q5 q6 

79.20 -5.57 51.00 -97.52 -91.67  
63.00 -12.22 -56.49 41.42 150.55 
63.00 

-0.01 
-47.98 -70.04 -61.55 177.16  

95.00 33.00 129.69 -98.10 90.57 
95.00 -107.01 109.95 -61.19 174.21 

105.00 
-25.24 

14.30 55.21 41.26 -152.97 
56.60 44.54 -55.11 41.90 152.06 
56.60 64.73 -129.65 -98.260 -90.55 

144.80 
-56.9 

104.49 -69.41 61.67 -6.33  
-41.00 -91.68 55.12 41.53 -152.48 

-143.00 -32.64 110.31 -61.47 -6.29 
-143.00 

-99.85 
-72.01 129.65 -98.09 90.82 

133.00 147.68 129.64 -97.90 90.99 
-60.00 7.59 -110.09 -61.36 -174.09 
-60.00 

-140 
-52.00 -124.89 -41.62 27.78 
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Fig. 1. Experimental setup for the identification of the 
elastostatic parameters  
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Fig. 2. End-effector used for elastostatic calibration 
experiments  

To generate elastostatic deflections, the gravity forces have 
been applied to the robot end-effector (see Fig 1) using 
specific calibration tool (see Fig. 2). To obtain the desired set 
of initial data, the manipulator sequentially passed through 
several measurement configurations. Using the laser tracker 
with the claimed precession 10 m , the Cartesian coordinates 
of the reference points have been measured twice, before and 
after loading. To increase identification accuracy, three 
reference points (markers) have been used and the loading of 
the maximum allowed magnitude 250-280 kg have been 
applied. In addition, to ensure high identification accuracy for 
each configuration, the experiments were repeated six times. 
In total the experimental data include 270 measurements 

which give 810 equations for identification of 9 desired 
parameters. 

The identification has been performed using Ordinary Least-
Square (OLS) and Weighted Least Square (WLS) techniques. 
For the second approaches the weights have been obtained 
using non-compensated deflections after identification joint 
compliances, normalization factor 0  has been assigned to 
the claimed precession of the laser tracker (10 m ). 
Corresponding values of the elastostatic parameters are 
presented in Table 3, where for WLS the results for 

0.5, 1, 2   are proposed. It also includes the confidence 
intervals computed as 3 , where the standard deviation   
has been evaluated based on the experimental data using 
expressions (8) and (13). The results show that the 
confidence intervals for OLS and WLS have intersections for 
all parameters of interest, moreover, the confidence intervals 
for WLS are always inside confidence intervals for OLS and 
considerably lower (see Table 4). Another important 
conclusion is that the choice of the coefficient   does not 
influence on the final results and for simplicity can be 
assigned to one.  

Table 3.  Identified values of manipulator elasto-static 
parameters using different approaches, [rad/N×μm] 

WLS 
ki OLS 

λ=0.5 λ=1.0 λ=2.0 
k21 0.297 ±0.010 0.287 ±0.0003 0.287 ±0.0003 0.287 ±0.0003 
k22 0.287 ±0.012 0.277 ±0.0004 0.277 ±0.0004 0.277 ±0.0004 
k23 0.315 ±0.018 0.302 ±0.0005 0.302 ±0.0005 0.302 ±0.0005 
k24 0.302 ±0.032 0.293 ±0.0010 0.293 ±0.0010 0.293 ±0.0010 
k25 0.251 ±0.020 0.246 ±0.0007 0.246 ±0.0007 0.246 ±0.0007 
k3 0.396 ±0.031 0.416 ±0.0011 0.416 ±0.0011 0.416 ±0.0011 
k4 3.017 ±0.248 2.786 ±0.0071 2.786 ±0.0071 2.786 ±0.0071 
k5 3.294 ±0.506 3.483 ±0.0120 3.483 ±0.0120 3.483 ±0.0120 
k6 2.248 ±0.725 2.074 ±0.0267 2.074 ±0.0267 2.074 ±0.0267 

 

It should be noted that the best weighing coefficients can be 
computed iteratively, where starting from the second 
iterations the residuals have been computed for the 
elastostatic parameters identified using WLS with the weights 
obtained on the previous iteration. This allows us to increase 
additionally identification accuracy by the factor 3-20 
comparing with single iteration WLS. Finally, the 
identification accuracy have been increased by the factors 27-
42 and the errors do not overcome 1.23% for the 6  and is 
0.09-0.34%. for the remainder parameters of interest (such 
non-equivalent distribution of the identification errors is 
caused by the specific of design of calibration experiment, 
where the position accuracy after compensation of the elastic 
deflections has been chosen as a performance measure 
(Klimchik 2012)). The benefits of WLS are summarized in 
Table 4. It includes mutual locations of the results for OLS 
and WLS, identification accuracy and the benefits of new 
identification algorithm comparing with old one. The 
convergence of the iterative procedure presented in Figure 3. 
Figure 3a shows variation in 21k  from iteration to iteration 
and Figure 3b provides corresponding Confidence intervals. 
This results shows that parameter value does not change 

k
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Table 4.  Benefits of WLS 

ki Mutual location of CI CIOLS CIWLS σOLS/σWLS 
k21  3.4% 0.09% 40.5 
k22  4.2% 0.13% 33.2 
k23  5.9% 0.18% 33.9 
k24  10.7% 0.33% 33.1 
k25  7.8% 0.27% 30.1 
k3 
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