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 

Abstract— This document provides a method for on-board 

monitoring and on-ground diagnosis of a hydromechanical 

actuation loop such as those found in aircraft engines. First, a 

complete system analysis is performed to understand its 

behaviour and determine the main degradation modes. Then, 

system health indicators are defined and a method for their 

real time on-board extraction is addressed. Diagnosis is 

performed on-ground through classification of degradation 

signatures. To parameterize on-ground treatment, both a 

reference healthy state of indicators and degradations 

signatures are needed. The healthy distribution of indicators is 

obtained from data and a physics-based model is used to 

simulate degradations, quantify indicators sensibility and 

construct the signatures database. At last, algorithms are 

deployed and a statistical validation of the performances is 

conducted. 

I. INTRODUCTION 

In aircraft engine industry, one of the greatest challenges 

is to increase products availability because costs of 

ownership induce prohibitive expense during aircraft 

immobilization. Up to now, delays and cancellations 

occurred randomly because system component failures were 

not predictable. Nowadays, new means of computation 

makes it possible to monitor the evolution of many engine’s 

features and prognostics and health management (PHM) [1] 

has become not only a possibility but a necessity to 

anticipate unwanted events. For aircraft engine 

manufacturers, PHM is a double challenge: to limit delays 

and cancellations and to reduce the time of maintenance 

operations by providing operators with trouble shooting 

assistance. 

 

A good summary of the main works done in the PHM 

field can be found in [2] and some of the methods have 

already been experimented in particular in the field of 

electronics, for example to monitor the remaining useful 

lifetime of batteries [3]. In France, some works such as [4] 

or [5] have addressed the issue of modelling a multi-levels 

architecture for a complex system’s monitoring process or 

formalizing the prognostics process [6]. 

As far as predictive monitoring applied to aeronautics is 

concerned, research is focused on developing mathematical 

tools for diagnosis and prognostics [7]. Some good reviews 

 
 

on the subject can be found in [8] for the diagnosis and [9] 

for prognostics.  

However, academic research and industrial needs are not 

on the same page on the following points: (1) experimental 

studies are restricted to sensor faults, vibration analysis and 

structural health monitoring (SHM) [10] but health 

assessment of control systems is rarely addressed; (2) papers 

commonly make the hypothesis that every variable is 

measured so indicators are easily constructible but actually, 

position, number and precision of sensors is defined and 

most of the time not modifiable; (3) because of data storage 

issues, indicators extraction must be performed on-board and 

the specific constraints related to the real time in-situ 

computation is almost never addressed and (4) physics-

based models are necessary to quantify the impacts of 

degradation and their potential evolution. 

 

This document focuses on the diagnosis of the following 

system: an actuation loop which purpose is to regulate the 

position of an aircraft engine variable geometry. The study 

will be articulated around five points: System Analysis, 

Indicators Definition, Degradations Modelling, Indicator 

Transformation Laws Computation and Statistical 

Validation of Performances. 

II. SYSTEM ANALYSIS 

In order to monitor a system, the first step is to determine 

its degradation modes and it can be achieved through 

expertise, experience feedback or Failure Mode and Effects 

Analysis (FMEA).  

The system is a closed loop composed of three main 

components: A controller, a servovalve and a cylinder. The 

position of the cylinder is measured by a linear variable 

differential transformer (LVDT), as shown in Fig. 1. The 

controller is of type proportional–integral–derivative (PID). 

 

This study will focus on the mechanical degradations of 

the system and electrical ones will not be treated. For 

example, electrical wires oxidation, micro cuts and 

connectors’ faults will not be addressed.  
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A. Degradation modes of a servovalve 

 In this application, the studied servovalve type is two-

stage flapper-nozzle. In this type of servovalve, the power 

transmission chain is the following one:  

1. A control current is send to a torque motor 

2. The current is converted to a displacement of the 

flapper through an electromagnetic effect 

3. The displacement of the flapper changes the position 

of the second stage spool via a hydraulic control and  

4. The position of the spool reorganizes the distribution 

of the flows. A flapper-nozzle servovalve 

configuration is shown in Fig. 2.  

 

 

Fig. 2: Electrohydraulic flapper-nozzle servovalve configuration 

The following list of the degradation modes selected for 

the servovalve is inspired by [11]:   

1)  Increased contamination of the filters: As dust and 

debris accumulate in the servovalve, filters gradually lose 

their efficiency and the hydraulic resistance increases. The 

result is a slower response of the servovalve. 

2)  Drift of the null bias current: As the torque motor 

ages and loses his magnetic properties, the null bias current 

of the servovalve, namely the current for which the flows are 

equal in control ports 1 and 2, can drift from its nominal 

value.  

3)  Increased backlash: With the progressive wear of the 

internal feedback spring, the hysteresis of the servovalve 

increases. 

4)  Increase of the friction force between spool and 

sleeve: This phenomenon is due to the cumulative effects of 

continuous movement of the spool and contamination of the 

hydraulic fluid because the debris induces a silting effect. 

5)  Increase in the radial clearance between spool and 

sleeve: Because of the contamination, abrasion of the 

corners of the spool lands resulting in an increase of internal 

leakage.  

B. Degradation modes of a cylinder 

The cylinder considered in this application is a double-

acting hydraulic cylinder with a cooling diaphragm between 

the two sides. The hydraulic fluid used is fuel. 

The following list of the degradation modes selected for 

the hydraulic cylinder is inspired by [12]: 

1)  Internal leakage between the two sides: As the seal 

ages, dust and debris accumulate between the seal and the 

sleeve resulting in an abrasive effect degrading the cylinder 

body. 

2)  Clogging of the cooling diaphragm: With the increase 

of the temperature, a coking of the fuel can occur, resulting 

in the clogging of the diaphragm. 

C. Other potential degradation modes 

The list of degradation modes presented above is not 

exhaustive and many other phenomenons can occur such as 

a damage of the kinematic chain downstream of the cylinder 

or the burst of a pipe but the choice was made to focus only 

on the servovalve and cylinder’s degradations. 

 

III. INDICATORS 

A. Flow Gain curve of a Servovalve 

Among the different measures characterizing a 

servovalve, the flow gain curve is one of the most 

significative because it displays both static and dynamic 

features as shown in Fig. 3.  

 

 
 

 

The extraction of this curve requires that the servovalve is 

equipped with flowmeters but in our application, only the 

position of the cylinder is measured. However, the cylinder’s 

velocity 𝑉𝑐𝑦𝑙 and the servovalve output flows in each control 

port 𝑄𝑆𝑉_ℎ𝑒𝑎𝑑  and 𝑄𝑆𝑉_𝑟𝑜𝑑 can be linked via the simplified 

equation: 

 
𝑉𝑐𝑦𝑙 = {

(𝑄𝑆𝑉_ℎ𝑒𝑎𝑑 −𝑄𝑐𝑜𝑜𝑙𝑖𝑛𝑔)  𝑆ℎ𝑒𝑎𝑑 ⁄ during shaft outlet

−(𝑄𝑆𝑉_𝑟𝑜𝑑 − 𝑄𝑐𝑜𝑜𝑙𝑖𝑛𝑔)  𝑆𝑟𝑜𝑑  ⁄ during shaft inlet
  (1)  

 

Where 𝑄𝑐𝑜𝑜𝑙𝑖𝑛𝑔is the cooling flow between the two sides of 

the cylinder and 𝑆ℎ𝑒𝑎𝑑 and 𝑆𝑟𝑜𝑑  are respectively the cross-

sectional area of the head and the rod sides. 
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Fig. 1 : Schematic of the hydromechanical actuation loop 
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Fig. 3 : Flow Gain curve and main features 



  

B. Velocity Gain of a hydromechanical loop 

In order to get around the lack of flowmeters to monitor 

the servovalve only, the idea is to monitor the whole loop by 

following salient features on the Velocity Gain curve. 

This curve can be obtained only with the measures of both 

the control current 𝐼𝑐𝑜𝑛𝑡𝑟𝑜𝑙  and the cylinder’s velocity 𝑉𝑐𝑦𝑙. The 

value of  𝑉𝑐𝑦𝑙  is computed by derivation of the cylinder’s 

position 𝑋𝑐𝑦𝑙. 

Blue points in Fig. 4 are the result of an extraction of the 

velocity gain curve performed during an entire flight. 

Because of the hysteresis of the servovalve, the dispersion of 

the points is substantial and therefore a smoothing algorithm 

based on local means is applied to the data. 

The curve smoothing is performed on-board through a 

real-time algorithm in order to store the least possible data in 

the controller during the flight. Then the on-ground part 

consists in processing the information contained in the curve 

and carrying out the health monitoring procedure. 
 

 

Fig. 4 : In-Flight extracted curve before and after smoothing 

C. Indicators Construction 

From the extracted curve, we define many indicators 

related to the targeted degradation. Those indicators are 

listed in Table I and their graphical equivalent is shown in 

Fig. 5.  

TABLE I 

INDICATORS EXTRACTED FROM THE CURVE 

Names  Targeted degradations 

Long Short 

Slope change #1 

abscissa 
𝑋1  Degradations impacting the horizontal 

position of the curve 

 Increase of the radial clearance 

between spool and sleeve 

Slope change #1 

ordinate 
𝑌1 Degradations impacting the vertical 

position of the curve 

 Diaphragm clogging, cylinder internal 

leakage  

Slope change #2 

abscissa 
𝑋2 Idem 𝑋1 

Slope change #2 

ordinate 
𝑌2 Idem 𝑌1 

Null Bias Current 

𝐼𝑛𝑏 =
𝑋1 + 𝑋2
2

  

𝐼𝑛𝑏 Degradations impacting the value of the 

Null Bias 

 Null Bias current shift 

Idle Current of the 

Loop (Current for 

null velocity)  

𝐼0 Degradations impacting the static 

behaviour of the loop 

 All the degradations 

Standard Deviation 

(hysteresis) at idle 

current  

𝐻𝑦𝑠0 Degradations impacting the hysteresis 

 Increased Backlash 

Velocity Gain for 

Shaft Inlet 
𝐺𝑖𝑛 Degradations impacting the global 

dynamic behaviour of the loop 

 Increased Backlash, Contamination of 

the filters, Increased friction force 

Velocity Gain for 

Shaft Outlet 
𝐺𝑜𝑢𝑡 Idem 𝐺𝑖𝑛 

Velocity Gain for 

Null Region 
𝐺𝑛𝑢𝑙𝑙 Idem 𝐺𝑖𝑛 

 

 
Fig. 5 : Graphical representation of the indicators 

IV. DEGRADATIONS MODELING 

A. Model and Sub-models Construction 

A physical model of the hydromechanical system has 

been developed in Matlab-Simulink® in order to simulate its 

behaviour in presence of some degradation and to quantify 

their impacts. This model is composed of three sub-models: 

Servovalve, cylinder and controller. The granularity of the 

sub-models must be important enough to simulate all the 

degradations discussed in the system analysis. For example, 

the sub-model of the servovalve, the most complex one, 

must include the modelling of the two-stages, the filters and 

the feedback spring. A good method for modelling 

servovalves is given in [13]. 

 

There are two ways degradations can be modelled: 

additive and multiplicative. The former consists in adding a 

value to some variables and the latter consists in a 

multiplication of some variables as shown in Erreur ! 

Source du renvoi introuvable.. In Erreur ! Source du 

renvoi introuvable., 𝑌𝑢 and 𝑈 are healthy values of 

variables, 𝑓 is the degradation intensity and 𝑌 is the 

degraded value of variables. 
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Fig. 6 : Additive and Multiplicative modelling of degradations 



  

TABLE II 

MODELLING OF DEGRADATIONS 

Degradation Modelling 

Increased 

contamination of 

the filters 

 Multiplicative:  To simulate a decrease of the 

efficiency, the flow is multiplied by a scalar in the 

range [0,1]  

Drift of the null bias 

current 

Additive:  A value corresponding to the opposite of 

the drift is added to the control current. 

Increased Backlash Multiplicative: Modification of the transfer function 

governing the position of the spool in the second 

stage.  

Increase of the 

friction force  

Additive: Increase of the coefficient of friction 

between spool and sleeve. 

Increase in the 

radial clearance  

Multiplicative: Decrease of the restriction coefficient 

at the corners of the spool lands victims of abrasion. 

Internal leakage 

between the two 

sides 

Multiplicative: Increase of the restriction coefficient 

of the cooling flow  

Clogging of the 

cooling diaphragm 

Multiplicative: Decrease of the restriction coefficient 

of the cooling flow 

 

B. Model Updating 

The main hypothesis of this method is that operational 

data are available. Thus, it is supposed that the distribution 

of the indicators corresponding to a healthy state is well 

known. 

For each simulation, the goal is to compute the velocity 

gain of the system by simulating the velocity of the cylinder 

for a gradually increasing control current from lower 

saturation boundary to upper saturation boundary. 

 

Before simulating the degraded states, it is necessary to 

simulate and update the model parameters against 

operational data for the reference healthy state. Fig. 7 shows 

both extracted and estimated velocity gain curves for the 

healthy state. The estimated one is obtained from a model 

configured with averaged parameters given by constructors.  

The result after model updating on parameters is also 

given in Fig. 7, and it can be noted that a difference remains 

between the curves around the idle current of the loop. The 

model used in this application is not enough accurate to 

explain this local deviation. 

 

Fig. 7 : Extracted against Estimated Velocity Gain of the healthy state 

 

 

 

C. Simulation of the degradations 

For this paper, the focus will be on only two degradations 

namely the drift of the null bias current of the servovalve 

and the internal leakage between the two sides of the 

cylinder. 

Results of the simulation on the updated model with those 

two degradations are given in Fig. 8.  

 

 

Fig. 8 : (a) Left: effect of a null bias drift. (b) Right: effect of an internal 

leakage in the cylinder 

V. INDICATORS TRANSFORMATION LAW COMPUTATION 

A. Construction of the laws 

In this part, a design of experiment is generated to 

organize the simulations of the behaviour of the system in 

presence of degradations. For each case, simulations are run 

for gradually increasing intensities of degradation. 

Eventually, the results are summarized in the form of 

indicators transformation laws (ITL).  

 

With 𝐼𝑛𝑑𝑖  representing the 𝑖𝑡ℎ indicator in a healthy state, 

𝐼𝑛𝑑𝑖
𝑑𝑒𝑔

 the 𝑖𝑡ℎ indicator in presence of the degradation 𝑑𝑒𝑔, 

and 𝐼𝑛𝑡𝑑𝑒𝑔 the intensity of the degradation 𝑑𝑒𝑔, the ITL 

named 𝐹𝑖
𝑑𝑒𝑔

 corresponding to the 𝑖𝑡ℎ indicator and the 

degradation 𝑑𝑒𝑔 can be defined as follows: 

 
𝐼𝑛𝑡𝑑𝑒𝑔

𝐹𝑖
𝑑𝑒𝑔

→  ∆𝐼𝑖
𝑑𝑒𝑔

= 𝐴𝑖
𝑑𝑒𝑔
× 𝐼𝑛𝑡𝑑𝑒𝑔 (2)  

Where𝐴𝑖
𝑑𝑒𝑔
 is the coefficient of the linear regression of 

∆𝐼𝑖
𝑑𝑒𝑔
 with respect to 𝐼𝑛𝑡𝑑𝑒𝑔. ∆𝐼𝑖

𝑑𝑒𝑔 is the change in the value of 

the indicator and can be also expressed this way: 

 
∆𝐼𝑖
𝑑𝑒𝑔

=  𝐼𝑛𝑑𝑖
𝑑𝑒𝑔
− 𝐼𝑛𝑑𝑖   (3)  

Thus, 𝐹𝑖
𝑑𝑒𝑔

 provides the change in the indicator’s value for a 

given intensity of degradation.  

 

B. Utilization of the laws 

Once computed, an ITL makes it possible to generate an 

estimated value of indicators for a degraded state from a 

healthy value computed from operational data according to 

the following equation: 

 
𝐼𝑖
𝑑𝑒𝑔

= 𝐼𝑖
ℎ𝑒𝑎𝑙𝑡ℎ𝑦

+ ∆𝐼𝑖
𝑑𝑒𝑔 (4)  

In this application, 7 degradations and 10 indicators are 

considered, which means that 70 ITL must be computed. For 

instance, the law giving the value of 𝑋1for the degradation 

drift of the null bias current is: 

 
𝐼𝑋1
𝑁𝐵 𝑑𝑟𝑖𝑓𝑡

= 𝐼𝑋1
ℎ𝑒𝑎𝑙𝑡ℎ𝑦

+ 𝐴𝑋1
𝑁𝐵 𝑑𝑟𝑖𝑓𝑡

× 𝐼𝑛𝑡𝑁𝐵 𝑑𝑟𝑖𝑓𝑡 (5)  
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Simulated Velocity Gain Curve for Healthy State
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Where 𝐼𝑋1
ℎ𝑒𝑎𝑙𝑡ℎ𝑦

 is computed by averaging the extracted 

value of X1 for a given number of flights for which the 

system is considered flawless. 

VI. STATISTICAL VALIDATION OF PERFORMANCES 

A. Key Performance Indicators 

For this application, both fault detection and diagnosis are 

addressed. A presentation and definition of Key 

Performance Indicators (KPI) is given in Table III. 

 TABLE III 
KEY PERFORMANCE INDICATORS  

KPI Definition 

False Positive Rate Proportion of False Positive (false alarm) among 

all the states where a fault is detected  

False Negative Rate Proportion of False Negative (undetected faults) 

among all the states where no fault is detected  

False Classification 

Rate 

Proportion of False Classification among all 

classifications 

Robustness Capacity of the monitoring system to be still 

efficient when some parameters drift from their 

nominal values. 

 

B. Method for fault detection and diagnosis 

A more precise presentation of the method presented 

below can be found in [14]. 

 

1) Indicators Model Learning:   

The first step is to learn a Gaussian model of the 

indicators distribution in a reference state, typically a healthy 

state. The model is learned from extracted indicators on a 

given number of flights and is presented as follows: 

 
𝑀𝑜𝑑𝑒𝑙(𝑖) = (

𝜇𝑖
ℎ𝑒𝑎𝑙𝑡ℎ𝑦

𝜎𝑖
ℎ𝑒𝑎𝑙𝑡ℎ𝑦) (6)  

 

Where 𝜇𝑖
ℎ𝑒𝑎𝑙𝑡ℎ𝑦

 is the mean of the indicators and 

𝜎𝑖
ℎ𝑒𝑎𝑙𝑡ℎ𝑦

 their standard deviation.  

 

2) Fault Detection:   

It is based on an abnormality score named 𝑍𝑠𝑐𝑜𝑟𝑒. For the 

indicator 𝑖, 𝑍𝑠𝑐𝑜𝑟𝑒,𝑖  is defined as follows: 

 

𝑍𝑠𝑐𝑜𝑟𝑒,𝑖 =
𝐼𝑖 − 𝜇𝑖

ℎ𝑒𝑎𝑙𝑡ℎ𝑦

𝜎𝑖
ℎ𝑒𝑎𝑙𝑡ℎ𝑦  (7)  

Where 𝐼𝑖is the currently measured value of indicator. 

 

Then a global abnormality score of the 

system 𝐺𝑙𝑜𝑏𝑎𝑙_𝑍𝑠𝑐𝑜𝑟𝑒 is computed from 𝑍𝑠𝑐𝑜𝑟𝑒,𝑖  with 𝑖 ∈

[1; 10] via the Mahalanobis distance [15].  

Indicators are extracted on-board and  𝐺𝑙𝑜𝑏𝑎𝑙_𝑍𝑠𝑐𝑜𝑟𝑒is 

computed on-ground at each flight. The parameterization of 

the fault detection consists in defining a relevant threshold 

value 𝑇ℎ𝑟 and if the value of 𝐺𝑙𝑜𝑏𝑎𝑙_𝑍𝑠𝑐𝑜𝑟𝑒 crosses 𝑇ℎ𝑟, it 

means that a fault has been detected. 

 

3) Diagnosis: 

Diagnosis is performed via a classification of signatures. 

A signature is a vector of indicators. For this application, a 

signature is a vector appending 10 indicators extracted from 

flight data: 

 
𝑆𝑖𝑔𝑛 = (𝑍𝑠𝑐𝑜𝑟𝑒,𝑋1 , 𝑍𝑠𝑐𝑜𝑟𝑒,𝑌1 , … , 𝑍𝑠𝑐𝑜𝑟𝑒,𝐺𝑛𝑢𝑙𝑙)

𝑇
 (8)  

If the system is healthy, 𝑆𝑖𝑔𝑛 is a zero vector of size 10. 

Assuming that the maximal intensities of the degradations 

are known, it is possible to determine the signatures of the 

degradations  𝑆𝑖𝑔𝑛𝑟𝑒𝑓,𝑑𝑒𝑔 associated. 

 
𝑆𝑖𝑔𝑛𝑟𝑒𝑓,𝑑𝑒𝑔 = (

𝐼𝑋1
𝑑𝑒𝑔
− 𝜇𝑋1

ℎ𝑒𝑎𝑙𝑡ℎ𝑦

𝜎𝑋1
ℎ𝑒𝑎𝑙𝑡ℎ𝑦 , … ,

𝐼𝐺𝑛𝑢𝑙𝑙
𝑑𝑒𝑔

− 𝜇𝐺𝑛𝑢𝑙𝑙
ℎ𝑒𝑎𝑙𝑡ℎ𝑦

𝜎𝐺𝑛𝑢𝑙𝑙
ℎ𝑒𝑎𝑙𝑡ℎ𝑦 )

𝑇

 (9)  

 

When a fault is detected, the classification algorithm is 

run. This algorithm is based on a pattern recognition method 

which finds the reference signature that most closely 

matches the currently measured signature. A guilt 

probability is assigned to each component of the system.  

C. Statistical Validation 

1) Matrix of the signatures 

To perform fault detection and diagnosis, it is essential to 

determine the matrix of the signatures. It shows the signature 

corresponding to the maximal intensity of the degradations. 

A part of this matrix, taking into account only two 

degradations is given in Table IV. 

TABLE IV 

MATRIX OF THE SIGNATURES  

Degradatio

n 
Influences (𝒁𝒔𝒄𝒐𝒓𝒆𝒔) 

𝑋1 𝑌1 𝑋2 𝑌2 𝐼𝑛𝑏  𝐼0 𝐻𝑦𝑠0 𝐺𝑖𝑛 𝐺𝑜𝑢𝑡 𝐺𝑛𝑢𝑙𝑙 

Drift of the null 

bias current 
24 0 26 0 28 24 0 0 0 0 

Internal leakage 

between the two 

sides 

0 4 0 11 0 1 0 0 0 0 

 

2) Performances of fault detection 

Once the matrix of the signatures is available, a detection 

threshold  𝑇ℎ𝑟 on the global score 𝐺𝑙𝑜𝑏𝑎𝑙_𝑍𝑠𝑐𝑜𝑟𝑒must be 

defined. 
The value of this threshold must be low enough to ensure 

detection of all the different degradation, even those not 

provided by the system analysis and high enough to ensure a 

low rate of false alarms. To set this value in an optimal way, 

it is essential to take into account the standard deviation of 

the 𝐺𝑙𝑜𝑏𝑎𝑙_𝑍𝑠𝑐𝑜𝑟𝑒. 

First, the computation of the probability density function 

of  𝐺𝑙𝑜𝑏𝑎𝑙_𝑍𝑠𝑐𝑜𝑟𝑒−ℎ𝑒𝑎𝑙𝑡ℎ𝑦 is performed to set a first value 

of 𝑇ℎ𝑟, as shown in Fig. 9. Typically, the chosen value for 

𝑇ℎ𝑟 is: 

 
𝑇ℎ𝑟 = 𝜇ℎ𝑒𝑎𝑙𝑡ℎ𝑦 + 𝐴 × 𝜎ℎ𝑒𝑎𝑙𝑡ℎ𝑦    (10)  

At first approach, the chosen value for 𝐴 is 𝐴 = 2 because 

it ensures that only 5% of false detection. However, this 

value can potentially limit the false negative rate so it is 

necessary to check if the degradations are still detectable.    

To ensure the performances, the distributions of 
𝐺𝑙𝑜𝑏𝑎𝑙_𝑍𝑠𝑐𝑜𝑟𝑒−ℎ𝑒𝑎𝑙𝑡ℎ𝑦,𝐺𝑙𝑜𝑏𝑎𝑙_𝑍𝑠𝑐𝑜𝑟𝑒−𝑙𝑒𝑎𝑘 and 𝐺𝑙𝑜𝑏𝑎𝑙_𝑍𝑠𝑐𝑜𝑟𝑒−𝑑𝑟𝑖𝑓𝑡  
are compared as presented in Fig. 9. 



  

Performances for different values of 𝐴 are presented in 

Table V. 

 

 

Fig. 9 : Distribution of Global_scores and likelihood functions 

TABLE V 

FAULT DETECTION PERFORMANCES  

𝐴 

Null Bias Drift Internal Leakage 

False 

Positive  

False Negative  False 

Positive  

False Negative  

0 0% 0% 50% 0% 

1 0% 0% 16% 0% 

2 0% 0% 3% 0% 

3 0% 0% 0.3% 2% 

 

3) Performances of diagnosis 

The classification algorithm gives, for each component of 

the system, a probability of guilt proportional to the 

colinearity between the current signature and the referenced 

signatures. The diagnosis performances depend on the 

intensity of the degradations. Results are shown in Table VI. 

TABLE VI 

DIAGNOSIS PERFORMANCES  

Effective 

Degradation 

Percentage of max 

intensity (From ITL) 

Probability of guilt 

of Drift 

Probability of guilt of 

Leak 

Drift 25% 0.94 0.06 

Drift 50% 0.94 0.06 

Drift 100% 0.94 0.06 

Leak 25% 0.37 0.63 

Leak 50% 0.13 0.87 

Leak 100% 0.11 0.89 

 

VII. CONCLUSION 

This paper provides a methodology to perform fault 

detection and diagnosis on a hydromechanical actuation 

loop. A first part details how to construct relevant indicators 

to perform on-board extraction of indicators and a second 

part how to achieve and validate fault detection and 

diagnosis on-ground. It must be noted that further works will 

follow, dealing with the management of uncertainties, the 

architecture of monitoring for a wider system and also 

prognostics.  
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