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ABSTRACT

This position paper presents our vision for the semantic management of moving objects. We argue that
exploiting semantic techniques in mobility data management can bring valuable benefits to many
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domains characterized by the mobility of users and moving objects in general, such as traffic manage-
ment, urban dynamics analysis, ambient assisted living, emergency management, m-health, etc. We pres-
ent the state-of-the-art in the domain of management of semantic locations and trajectories, and outline
research challenges that need to be investigated to enable a full-fledged and intelligent semantic man-
agement of moving objects and location-based services that support smarter mobility. We propose a dis-

tributed framework for the semantic enrichment and management of mobility data and analyze the
potential deployment and exploitation of such a framework.

1. Introduction

With rapid advances in sensor technologies and wireless com-
munications, a plenty of positioning methods and systems have
been developed, that determine the locations of moving objects
with different accuracy. A sequence of locations, represented as
timestamped points in appropriate geometric/geographic space,
makes a trajectory of a moving object in its raw form. A lot of
research has been first performed on the modeling, representation,
processing, querying, analysis and mining (Li et al., 2011; Wu, Lei,
Li, & Han, 2014) of such raw moving object trajectories by the mov-
ing object database (MOD) community (Wolfson, Xu, Chamberlain,
& Jiang, 1998; Wolfson & Mena, 2004). However, smart mobility
services obviously need to go beyond this straightforward repre-
sentation and management of mobility.

Recently, the field of data management for moving objects has
focused on capturing semantic aspects of moving objects (their
locations, trajectories, features, activities, behaviors, etc.). As
defined in Antoniou, Corcho, Aberer, Simperl, and Studer (2012),
“Semantic data management refers to a range of techniques for
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the manipulation and usage of data based on its meaning”.
According to Lim, Wang, and Wang (2007), thanks to semantic data
management, “users can query the data, the domain knowledge,
and the knowledge inferred from the data in the same way as
querying just relational data”. The work presented in Fernandez,
Arias, Martinez-Prieto, and Gutiérrez (2013) indicates that
semantic technologies enable the management of the variety
aspect of Big Data. In Bizer, Boncz, Brodie, and Erling (2012) two
classes of challenges are identified for Big Data (engineering chal-
lenges and semantic challenges), being the semantic challenges
related to the problem of “finding and meaningfully combining
information that is relevant to your concern”. Semantic data man-
agement leads to an explicit representation of the meaning of enti-
ties and their features, which can later be exploited to provide a
more effective and complete query processing and analysis by
enabling reasoning, data sharing and interoperability, and flexible
solutions that are able to interpret those meanings and act
accordingly rather than rely on hard-coded predefined behavior
(time-consuming to develop and inflexible in face of unexpected
situations that were not anticipated). Several semantic techniques
for geo-spatial information and knowledge representation, annota-
tion, querying, and reasoning, have been developed and exploited.
However, semantic concepts, methods and techniques should still
be better incorporated and applied to the domain of moving object
data management and thus to smart location-based services (Sheth
& Perry, 2008; Ilarri, [llarramendi, Mena, & Sheth, 2011).
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We argue that, by mixing methods and techniques developed
from different fields like moving object databases (MOD) and the
Semantic Web -an extension of the Web in which the semantics,
or meaning, of the information is explicitly and formally defined-
(Berners-Lee, Hendler, & Lassila, 2001; Shadbolt, Berners-Lee, &
Hall, 2006), it is possible to enhance the way information about
moving objects is managed and the way services are designed
(from the modeling, querying, processing, and analysis points of
view). As an example, recent proposals claim that linking seman-
tics and Location-Based Services (LBSs) (Schiller & Voisard, 2004),
which are services that provide customized information depending
on the current location of the user (e.g., vehicle tracking
applications, friend-finder applications, location-based emergency
services, location-based advertisements, location-based games,
etc.), can provide valuable benefits (Ilarri & Illarramendi et al.,
2011), such as:

e Flexible querying. In a traditional query processing approach
there is a certain predefined data schema that the user needs
to be aware of in order to submit queries asking about the types
of entities defined in the schema and their attributes. By using
semantic techniques, more flexible and dynamic approaches
are possible, based on keyword-based searching (Trillo, Gracia,
Espinoza, & Mena, 2007) or intelligent query-answering (Yu &
Spaccapietra, 2010), that can exploit information about the con-
text of the user. This can require the use of semantic techniques
such as: word sense disambiguation (Navigli, 2009), to interpret
correctly the actual meaning of the keywords introduced by the
user; automatic classification, as for example if a user asks
about “transportation options” this may include different types
of entities, such as taxis and buses; semantic spatial search
(Park, 2014); and even automatic service discovery and
matching.

Management of semantic locations and trajectories. Locations can
be expressed at different levels of granularity and abstraction,
and users should be able to use the location terminology they
require (e.g., cities, provinces, neighborhoods, buildings, rooms,
etc.); for this purpose, these symbolic locations could be
encoded in ontologies (Ding, Kolari, Ding, & Avancha, 2007;
Gruber, 1993; Horrocks, 2008; Uschold & Gruninger, 2004) that
explicitly represent the properties of the locations and their
relationships. Similarly, applications should consider trajecto-
ries of moving objects that characterize their spatiotemporal
behavior beyond just a raw sequence of locations, enriching
raw trajectory data with higher-level information (semantic
annotations) that can later be exploited by applications. Due
to its relevance for our proposal, we discuss semantic locations
and trajectories in more detail in Section 2.

Interoperability among different LBSs and providers. Mobile users
should receive useful information services independently of
their current location, which means that there should be a
way for different LBSs (potentially developed by different com-
panies and operating in different areas or countries) to cooper-
ate, by sharing and exchanging data. This requires the use of
semantic techniques (semantic matching to bridge the existing
differences in the data schemas) and/or standards (common
data schemas) that guarantee that the data exchanged are inter-
preted unambiguously.

Protection of personal location information. The location of a
mobile user represents very sensitive information that should
be kept as private as possible and used only for the require-
ments of the service that the user would like to access
(Krumm, 2009). However, it has been shown that the simple
obfuscation of the location data sent to a server (introduction
of a deliberate imprecision) is not enough, as an attacker could
correlate the coarse location provided with background

knowledge to try to identify the location with higher precision.
So, semantic techniques are needed to prevent those potential
attacks, as proposed in the semantic-aware PROBE framework
(Damiani, Bertino, & Silvestri, 2010). The privacy issue is
mentioned several times along this paper, and particularly in
Section 4.5.

Reasoning in complex and dynamic contexts. By effectively bene-
fiting from the explicit representation of the semantics of enti-
ties, it is possible to provide intelligent LBSs, that reason over
the available information (e.g., the location of the user, the user
preferences based on a user profile, etc.) and take smart
decisions adapted to the current context of the user.

The ideal is to be able to develop and provide smart location-
based and mobility services that understand the user requests
and interaction, implicitly based on the semantics of mobility
and contextual information, and know how to behave and adapt
in dynamic and unexpected situations. For example, users may
issue the following information requests to service providers:
“What are the interesting places in the city this evening and what is
the best schedule for visiting them?”, “What is currently the best evac-
uation path for people with disabilities?”, “Will there be a traffic jam
on my trip to the meeting (and, if so, how to avoid it)?”. Other propos-
als, such as Viktoratos, Tsadiras, and Bassiliades (2014), that
focuses on Location Based Social Networking Services (LBSNS),
have also emphasized the interest of semantic technologies to rep-
resent physical entities and their associations, enable interopera-
bility among heterogeneous systems and knowledge sharing, and
provide a common ground for reuse and future extension.

The creation and exploitation of the semantics of the users’
mobility would be a key issue to develop systems that dynamically
recommend customized and useful information and services to
mobile users and that proactively provide notifications regarding
events in their surroundings (Ardle, Petit, Ray, & Claramunt,
2012). To support such requests, a mobile user may need to send
his/her current location, (partial) trajectory, personal context, pro-
file and preferences, and any other information necessary for the
service providers. However, mobile users do not want to reveal lots
of personal and trajectory related information to service providers,
even if this could enable them to detect the semantics of their loca-
tions and trajectories and intelligently satisfy their requests. More-
over, the continuous flow of location/trajectory data originated
from moving objects, along with personal and contextual data, user
profiles and social interaction, would result in very high demands
for the transfer, storage, processing, querying, and analysis of big
mobility data.

Pervasive/ubiquitous computing generally considers huge
populations of moving objects of different kinds (people, vehicles,
assets, animals, etc.) equipped with mobile devices (smartphones,
wearable devices, smart sensors) with increasing computing,
communication and sensing capabilities, that form a dynamic
computing and communication infrastructure connected by
different types of both centralized and mobile ad hoc networks
(MANETs) (Giordano, 2002).

To provide effectiveness and scalability in managing the seman-
tics of moving objects, a distributed infrastructure is needed, in
which each moving object collects, stores, processes and analyzes
the semantics of its own mobility data/information. We envision
a scenario in which moving objects exchange various categories
of information and knowledge (e.g., regarding the location, per-
sonal and social status, vehicle condition in case the moving object
is a vehicle, activity, behavior, environment and traffic conditions,
air pollution, etc.) with others, but also share such information/
knowledge through geo-social networks (Shankar, Huang, Castro,
Nath, & Iftode, 2012; Vicente, Freni, Bettini, & Jensen, 2011), social
media services, and geospatial information services, enabling a



broad range of applications and services, such as urban dynamic
mining, public safety, and environment monitoring. The exchange
of sensor and user-generated data and the provision of Volun-
teered Geographic Information (VGI) (Sui, Elwood, & Goodchild,
2012) emphasize a collaborative participatory sensing and
crowdsourcing environment (Reddy et al., 2009; Wirz et al,
2013) that is expected to play a key role in this context.

Incorporating semantics in such an Internet of Moving Things
should provide valuable semantic information and services to
mobile users to support smarter mobility in dynamic environ-
ments. However, numerous research challenges arise from the
application of the semantic paradigm to the management of
moving objects, which are summarized in Fig. 1 and described in
Section 4 in more detail. Overall, the key contributions of this
paper can be summarized as follows:

e We review the related work and the state-of-the-art in the
modeling and representation of semantically-enriched locations
and trajectories of moving objects. We provide a good coverage
of representative efforts, in order to justify the interest of our
proposal and identify existing difficulties, but it is not our goal
to perform a comprehensive and detailed survey-like study.
We present the key research challenges of the semantic man-
agement of moving objects, that should lead to smarter mobility
management in plenty of moving object application domains.
We propose SemanticMOVE, a novel and scalable reference
framework for the semantic management of moving objects,
capable of tackling the identified challenges. It incorporates
distributed storage, processing, reasoning, analysis, and mining
of semantic mobility data.

The rest of this paper is organized as follows. Section 2 presents
related work in semantic modeling and representation of moving
object locations and trajectories. Section 3 presents two illustrative
use case scenarios where the semantic management of moving
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objects would be beneficial. Section 4 reviews the research chal-
lenges to be faced. Section 5 proposes the distributed framework
SemanticMOVE for the semantic management of moving objects.
Finally, Section 6 provides some conclusions.

2. From raw positioning to semantic locations and trajectories

Various positioning methods and techniques provide the deter-
mination of a location represented as a spatio-temporal point (x, y,
t) in an appropriate geographic reference system. In open space
(outdoors), mobile devices/users are most commonly and
accurately positioned by using GNSS (Global Navigation Satellite
System) technologies like GPS (Global Positioning System). In
indoor environments, accurate positioning is more difficult to
obtain: radio technologies such as Bluetooth, RFID (Radio
Frequency Identification), NFC (Near Field Communication), and
Wi-Fi, are widely used, but infrared and ultrasound technologies
or inertial sensors are also of great interest. To provide smooth
positioning and navigation across outdoor/indoor spaces, the inte-
gration and seamless handover between various positioning sys-
tems and technologies is required. Positioning methods provide a
stream of location data at different accuracy and sampling rate
and determined in a corresponding geometric/geographic space.
These locations of moving objects form a sequence of timestamped
points delivered to data management systems, for appropriate
storage, processing, analysis, and use in a variety of application
domains such as animal/people tracking, emergency management,
traffic monitoring, location-based social networks, etc.

To provide a semantic interpretation of movement data, recent
research has focused on the semantic annotation of locations and
trajectories. Related work in the domain of semantics for moving
objects mostly considers either the conceptual modeling and anal-
ysis of semantic trajectories or the corresponding representation
and implementation tied to specific Database Management
Systems (DBMSs). However, there is a significant need of methods
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and frameworks for a comprehensive and generic semantic-based
representation, management, analysis, and reasoning for moving
objects in big mobility data applications.

In this section, we overview some recent work related to the
semantic enrichment of locations and trajectories.

2.1. Modeling and management of semantic locations

An essential feature of moving objects is their continuously-
changing location. Locations of moving objects can be represented
at different levels of granularity, not only at the finest geographic
location granularity (Hornsby & Egenhofer, 2002). In other words,
one can see the location of a moving object from different semantic
perspectives, thus supporting different concepts of location (e.g.,
GPS coordinates, the city where the moving object is located, the
building where it is, the room, etc.), and it should be possible to
specify the semantic location terminology that is needed or
convenient for each specific query and information need. The con-
cept of location granule has been proposed in Ilarri, Bobed, and
Mena (2011) to denote these semantic location requirements and
describe their impact on the query processing. In other papers,
the term place is used, for example, to represent human daily activ-
ities as a sequence of locations that comply with a certain upper
bound distance and a lower bound duration (time-based clustering
of location measurements) (Kang, Welbourne, Stewart, & Borriello,
2004) or as a sequence of place visits (Do & Gatica-Perez, 2014);
according to Do and Gatica-Perez (2014), the concept of place is
“key for studying individual mobility patterns”.

Moreover, these semantic locations could also have attached
other semantic information that could be exploited automatically
during the query processing. For that reason, it is interesting to link
them to concepts in an ontology (Ding et al., 2007; Gruber, 1993;
Horrocks, 2008; Uschold & Gruninger, 2004). However, how to effi-
ciently manage and effectively exploit these semantic location gran-
ules (Bernad, Bobed, Mena, & Ilarri, 2013) is still an open problem.

2.2. Modeling and management of semantic trajectories

Trajectories should not be seen exclusively as a sequence of
geographic coordinates, but as something that has a meaning,
which enables a suitable interpretation of the movement per-
formed. A raw trajectory can be enriched with related contextual
information (semantic annotations, such as background geographic
information, e.g., POIs -Points of Interest—-, or other context
knowledge). This enrichment can be performed either by the users
themselves or automatically by using segmentation techniques
and exploiting sensor data (e.g., see Do & Gatica-Perez, 2014). In
the following, we discuss the main ideas of semantic trajectories
and the proposed modeling approaches.

2.2.1. The basics of semantic trajectories: episodes, stops, and moves

A semantic trajectory has extra data that usually describe the
trajectory using symbolic entities (locations) at which the moving
object stops and moves (along specific paths over a road/street net-
work and possibly using different means of transportation). More
generally, a segmentation of the trajectory in episodes can be per-
formed. According to Mountain and Raper (2001), an episode is a
discrete time period for which the spatio-temporal behavior is rel-
atively homogeneous. In general, we could say that an episode is a
fragment of the trajectory that satisfies a certain predicate and is
significant for a given application (Parent et al., 2013). A traditional
segmentation is based on whether the object is moving or not (that
leads to distinguishing between stops and moves), but other criteria
could be used instead, such as the transportation mode used
(useful for transportation planning in a city, for example) or the
type of road traversed (a highway, an urban road, a bike path,

etc.). The proposal presented in Wang, Li, Jiang, and Shi (2013), that
focuses on semantic trajectories from videos (detection of
video events and video event pattern mining), indicates that a
representation based only on stops and moves is weak (unsuitable
to represent, for example, a person that passes a shop without
stopping) and so also introduces the semantic tags enter, leave,
begin, and end, along with an algorithm that generates semantic
trajectories from trajectory data using all these tags.

It is interesting to note that episodes are naturally annotated
with the criterion that defines the episode (defining annotation)
but possibly also with other episode annotations (Parent et al.,
2013), such as the closest POI to the corresponding segment, a
semantic region (land use, administrative regions, etc.) or a road
network (Yan, Parent, Spaccapietra, & Chakraborty, 2010), or other
related features (type of place, activities performed there, etc.).
Moreover, the trajectory itself may have other annotations that
do not apply to any particular segment but to the trajectory as a
whole (Spaccapietra & Parent, 2011). For example, Spinsant, Celli,
and Renso (2010) propose a rule-based approach to identify the
most probable POI associated to each stop in the trajectory and
then globally annotates the trajectory (based on the POIs visited)
with information about the overall activity that it represents
(e.g., tourism, shopping). Finally, according to Parent et al.
(2013), it is also possible to annotate individual trajectory posi-
tions, although this is not usual because it could generate a large
number of annotation repetitions.

Several proposals have focused on the problem of automatically
detecting significant stops from the raw trajectories. For example,
Ashbrook and Starner (2003) try to detect locations that are
semantically meaningful for a moving object by clustering GPS
data. Krumm and Horvitz (2006) focus on the prediction of desti-
nations and segment a trajectory into subtrajectories according
to certain places identified (gaps of at least five minutes in the
GPS samples -indicating that the vehicle was not moving- or at
least five minutes of speeds below two miles per hour -interpreted
as a parked vehicle with the GPS receiver sending slightly different
locations due to noise-). Andrienko, Andrienko, and Wrobel (2007)
also consider a temporal threshold to identify significant places
within a trajectory (the authors show an example using two hours
as the temporal threshold). Zheng, Zhang, Ma, Xie, and Ma (2011)
tackle the problem of recommending friends and places to mobile
users and define stay points as groups of consecutive GPS locations
that are within a certain distance threshold and above a certain
temporal threshold. Palma, Bogorny, Kuijpers, and Alvares (2008)
present a clustering-based algorithm (CB-SMoT, Clustering-Based
SMoT) to identify stops and moves based on the idea that interest-
ing places are determined by the parts of a trajectory where the
speed is lower than in other parts of the same trajectory, whereas
the method DB-SMoT (Direction-Based Stops and Moves of Trajecto-
ries) (Rocha, Oliveira, Alvares, Bogorny, & Times, 2010) consider the
variation of the direction to create the clusters that determine the
interesting places. Alvares et al. (2007) present an algorithm (SMoT,
Stops and Moves of Trajectories) that considers as stops those
candidate places where the object stays for at least a certain
amount of time; the candidate places and the time thresholds
are defined by the specific application considered, and each
candidate place can have a different time threshold associated.
Cao, Cong, and Jensen (2010) have also the goal of extracting
semantic locations (locations that are semantically meaningful to
users) from raw GPS data, by applying clustering techniques, con-
sidering the patterns of visits to the clusters and using a reversed
geocoder (to obtain street addresses from sample points within
the clusters) and yellow pages (to obtain the semantics of those
sample points). As a final example, in the computing platform for
spatio-temporal trajectories presented in Yan et al. (2010) the
authors indicate that they have implemented velocity, density,



orientation and time series based algorithms to identify stops and
moves (although Yan et al. (2010) only address the velocity-based
approach).

Obviously, which stops are significant and which stops are
not is usually application-dependent (e.g., see Alvares et al.,
2007), but some techniques try to deduce significant stops with-
out the need to specify the potentially-interesting geographic
places in advance (e.g., Palma et al., 2008). The work presented
in Andrienko, Andrienko, Hurter, Rinzivillo, and Wrobel (2013)
considers application scenarios where there is no predefined
set of places from which the places of interest can be selected
(e.g., flight or maritime traffic scenarios, animal migrations,
sociological studies of human behavior, etc.), and proposes an
approach based on event clustering to extract significant places
in the trajectories. On the other hand, the proposal in Yan,
Macedo, Parent, and Spaccapietra (2008) distinguishes between
the geometric component of a trajectory (sequence of significant
stops and moves, obtained through trajectory segmentation and
considering what makes a stop significant from the point of view
of the application), the geographic component (relevant geo-
graphic information data -such as POIs- that characterize the
trajectory beyond simple spatio-temporal points, giving an expli-
cit meaning to the stops and moves), and the application domain
component (application objects that are relevant for the meaning
of the trajectory, such as events that may have influenced the
movement).

As commented before, it is possible to semantically segment a
trajectory to identify episodes different from the traditional stops
and moves. For example, the approach in Xie, Deng, and Zhou
(2009) tackles the problem of extracting activities (e.g., dining
out, working, shopping, etc.) from trajectories by exploiting the
concepts of influence and influence duration. The basic idea is that
a certain activity can only occur if there is an appropriate nearby
POI during a certain amount of time (e.g., having lunch if there is
a restaurant used for at least 30 min). Similarly, Spinsant et al.
(2010) also highlight that different activities can be characterized
by different durations. As a final example, the proposal in Liao,
Fox, and Kautz (2005) presents a location-based activity recogni-
tion framework based on Relational Markov Networks.

In a comprehensive survey on semantic trajectories presented
in Parent et al. (2013), the concept of semantic trajectory highlights
the importance of representing the semantics behind a trajectory.
That paper reviews existing approaches and techniques for enrich-
ing trajectories with semantic information, as well as the use of
data mining to analyze semantic trajectories.

2.2.2. Some significant approaches to model semantic trajectories

The work presented in Spaccapietra et al. (2008) focuses on the
conceptual modeling of semantic trajectories and proposes two
different approaches. One solution implies representing the trajec-
tories and their semantic units (stops, moves, etc.) in the database
schema, whereas the second one implies defining a new Trajectory-
Type data type to hide and abstract the access to the different com-
ponents of a trajectory. Semantic trajectories are generated by
associating the raw trajectory points and segments with back-
ground geographic and application-specific information.

SeMiTri (Yan, Chakraborty, Parent, Spaccapietra, & Aberer, 2011)
is a framework proposed for the semantic annotation of trajecto-
ries. It is based on a conceptual model called Semantic Trajectory
Model, which considers a semantic trajectory as a sequence of epi-
sodes that have a particular significance for a given application.
Algorithms are provided to annotate trajectories with semantic
regions (e.g., representing a building, a university campus, etc.),
semantic lines (road segments along with the transportation mode
used to traverse them), and semantic points (meaning of the stop
episodes; e.g., a bar, a restaurant, a shop, etc.). On the other hand,

SeTraStream (Yan, Giatrakos, Katsikaros, Pelekis, & Theodoridis,
2011) focuses on online trajectory annotation and offers real-time
capabilities for cleaning, compressing, and segmenting location
data.

CONSTANT (CONceptual model of Semantic TrAjecTories) (Bogorny,
Renso, de Aquino, de Lucca Siqueira, & Alvares, 2014) is a semantic
trajectory conceptual data model, which accounts for the modeling
of semantic subtrajectories, semantic trajectory points, geographic
places, events, goals/purposes of each trajectory, environments of
the corresponding moving objects, and trajectory behaviors. The
proposed general model supports the classical concept of stops
and moves but only as a particular case.

Several proposals exploit ontologies (Ding et al., 2007; Gruber,
1993; Horrocks, 2008; Uschold & Gruninger, 2004) to represent
knowledge related to mobility. Motivated by the idea that annotat-
ing trajectories using a shared vocabulary would be very beneficial,
the proposal in Hu et al. (2013) presents an ontology design pat-
tern for semantic trajectories. The solution proposed abstracts
itself from specific application domains (as it looks at classes and
properties found commonly in semantic trajectories across differ-
ent domains). The ontology is encoded in the Web Ontology Lan-
guage OWL (Bao et al., 2012; Bechhofer et al., 2004), allows the
integration of different relevant aspects (related geographic infor-
mation, domain knowledge, and device data), and can be extended
by defining subclasses and subroles as needed for specific applica-
tions. Wang et al. (2013) also use an ontology and reasoning to
match trajectory patterns. Renso, Baglioni, de Macedo, Trasarti,
and MonicaWachowicz (2013) use inferencing and a mobility
behavior ontology, that conceptualizes the ground concepts of
the domain. Baglioni, Macedo, Renso, and Wachowicz (2008)
present an approach for the semantic modeling of trajectories
and reasoning on them, proposing to encode domain knowledge
in an ontology. An ontological framework for semantic trajectory
modeling is also proposed in Yan et al. (2008), which presents
ontological modules (sub-ontologies) for the geometric, geo-
graphic, and application domain knowledge that define a
global semantic trajectory ontology. A Moving Object Ontology
(MOO) is also presented in Camossi, Villa, and Mazzola (2013),
whose purpose (as opposed to work on trajectory segmentation)
is to formalize movement patterns and retrieve trajectories that
comply with that behavior (in the context of maritime
surveillance). Nevertheless, according to Camossi et al. (2013),
the scalability of ontology representations for large datasets of
movement data is an open issue.

Recently, the concept of symbolic trajectory (sequence of tempo-
rally-annotated labels) has been proposed as an alternative to
semantic trajectories suitable for implementation in a certain
spatial database system (Valdés, Damiani, & Giiting, 2013).
Specifically, the authors have integrated those symbolic trajecto-
ries within the SECONDO database system (Giiting, Behr, &
Diintgen, 2010). The associated labels can then be exploited by a
pattern language that can be used to match and rewrite symbolic
trajectories. In Dodge, Laube, and Weibel (2012), the authors
propose a symbolic representation of trajectories based on the
identification of similar movement parameters (e.g., speed,
acceleration, direction).

2.2.3. Exploitation of semantic trajectories

Semantic trajectories can be exploited for a variety of purposes.
First, as they incorporate annotations that explicitly represent the
knowledge behind the trajectories, they enable understandability
and sharing. That knowledge can also be used to perform advanced
data mining tasks that would be difficult or impossible to perform
on the raw trajectories (see Section 4.4 for more details). Overall,
the semantic annotations can be exploited for a variety of
purposes. For example, Richter, Schmid, and Laube (2012) use



the semantics of a trajectory to compress it without much informa-
tion loss. As another example, although semantic trajectories can
expose more sensitive information, it is possible to consider their
encoded knowledge to prevent privacy attacks (see Section 4.5).

Finally, it is interesting to mention the proposal presented in Su,
Zheng, Zheng, Huang, and Zhou (2014), which highlights some
disadvantages of semantic trajectories (emphasis on moving paths
-spatial information- but not on moving behaviors -temporal
information-, difficulty to automatically identify the interesting
parts in the trajectory, and difficulty to communicate and store
them). Motivated by these shortcomings, they present the system
STMaker, which obtains a high-level summary of a trajectory in
textual format. Although we do not believe that the text summary
can replace a full-fledged semantic model of the trajectory, it rep-
resents another possible way to exploit the extracted information
for specific applications (e.g., the textual summary could be shown
to a final user).

2.2.4. Importance of the environment of the trajectories

To conclude this section, it is interesting to mention that,
besides the locations and the trajectories, the modeling of the
spaces where moving objects evolve is a key semantic feature
(Afyouni, Ray, & Claramunt, 2012). For example, the data model
proposed in Xu and Giiting (2013) supports modeling multiple
infrastructures (public transportation networks, free space, road
networks, and indoor scenarios), each representing a certain envi-
ronment for the moving objects and defining the possible places
where the moving object could be located (e.g., roads and streets
for the case of a road network), thus enabling queries considering
scenarios with different transportation modes and environments.
In Hu et al. (2013), transportation networks are emphasized as
an important type of geographic information used to make sense
of trajectories. Several proposals related to the field of moving
objects have emphasized the importance of considering the under-
lying transport network for modeling and querying (e.g., Cao &
Wolfson, 2005; Ding & Deng, 2011; Giiting, de Almeida, & Ding,
2006; Vazirgiannis & Wolfson, 2001). A semantic representation
model that identifies significant points within a network-con-
strained trajectory is presented in Li, Claramunt, Ray, and Lin
(2006). Semantic trajectories where the movements of the objects
are constrained to a network (e.g., cars, trains) are called semantic
map-matched trajectories in Parent et al. (2013).

2.3. Beyond traditional semantic-based mobility

Although semantic trajectories have been extensively
researched at the conceptual modeling level, and conceptual data
models have been developed to represent semantic trajectories,
we still lack a generic mobility data management framework.

In the related work, server-based solutions for the semantic
enrichment of trajectories are proposed, which follow an off-line
and bottom-up approach. They assume that raw spatio-temporal
data originated from moving objects are collected, processed and
semantically enriched at the central server(s). For example,
Pelekis, Theodoridis, and Janssens (2014) envision a framework
consisting of three layers: (1) a traditional MOD at the bottom
layer, which is in charge of the raw mobility data management;
(2) a Semantic Mobility Database (SMD) at the middle layer, that
provides novel data types, indexing methods, and operators
extending MOD query languages for querying and analyzing
mobility data from a semantic perspective; and (3) the application
interface at the top layer, providing users with querying and anal-
ysis functionality on either the MOD or the SMD that lies below.

Similarly, the SeMiTri system architecture (Yan, & Chakraborty,
et al.,, 2011), referenced before in Section 2.2.2, consists of a stop/

move computation part that processes the raw GPS records to pro-
duce the output trajectory in the form of stops and moves. The
Semantic Annotation part of the architecture comprises three
annotation layers, for region, line and point annotations, which
are combined to produce the annotated trajectory. A Semantic Tra-
jectory Analytics Layer encapsulates methodologies that compute
statistics about the trajectories (e.g., trajectory patterns) and stores
them as aggregated information in the Semantic Trajectory Store to
be accessible by applications.

The server-based approach considered in the existing work
means that the moving objects are supposed to continuously send
a stream of raw location data to a trajectory server (or several
servers, in case a distributed fixed infrastructure of servers in
charge of different geographic areas is considered) that constructs
and stores the trajectories of the objects in an appropriate MOD, for
example SECONDO (Giiting et al., 2010) or HERMES (Pelekis,
Frentzos, Giatrakos, & Theodoridis, 2008), and performs the seman-
tic enrichment of such trajectories using geospatial information
sources (e.g., information about the road network, information
about the places visited, geo-sensor networks, etc.). In order to
enrich the trajectories with the personal context of the user (e.g.,
user activities, physiological and emotional status, user profile
and preferences), such data need to be continuously sent by the
moving objects to the server in its raw form to be integrated and
included in the semantic trajectory enrichment process at the ser-
ver itself. The main shortcomings of this kind of approach are the
following:

e Maintaining raw trajectory data of a huge population of moving
objects along with rich personal/environmental/social context
results in very high demands for network bandwidth, as well
as for the storage, processing, querying and analysis of such
big mobility data, necessary for the semantic enrichment of tra-
jectories and their exploitation.

The mobile users do not have control over the semantic enrich-
ment process, i.e., which data are included and how the seman-
tic enrichment is performed.

A pure server-based approach cannot benefit from the process-
ing and storage capabilities of the mobile devices.

The privacy of the mobile users could be compromised at the
server, where the complete semantics of the users’ mobility
are collected, analyzed and stored, so the privacy needs to
be preserved according to the preferences supplied by the
users.

Beyond the current state of the art, a semantic mobility data
management framework should provide an efficient and compre-
hensive storage, querying, processing, analysis and mining of
semantic mobility data. It should also fully set up the concept of
ubiquitous systems (Weiser, 1991) in a context of mobility that
makes it usable in real moving object applications aiming at a bet-
ter understanding and exploitation of mobility. Moreover, more
research is needed to determine how mobile applications can ben-
efit from semantic trajectories (through querying, reasoning and
analysis), according to the context of the user. Interoperability sit-
uations where there is a need to exchange and understand seman-
tic mobility information collected and defined by others is also an
issue to address.

In the next section, we present use case scenarios to show the
necessity and the potential of the semantic management of moving
objects and mobility data. Several research challenges must be
addressed and integrated to provide an efficient and effective
semantic management of mobility beyond the state-of-the-art
semantic trajectories to make these scenarios a reality. We discuss
those challenges in Section 4.



3. Use case scenarios

We first present use case scenarios that illustrate the need for
semantic location-based services based on a comprehensive man-
agement of the semantics of moving objects.

3.1. Semantics in urban mobility

Alice travels to another city with the assistance of the Semantic-
MOVE mobile “travel” application. The application analyzes her
trajectory, detects a mode of transport (e.g., see Biljecki, Ledoux,
& van Oosterom, 2013; Yu, Yu, Wang, Lin, & Chang, 2014), which
in this case is a train, and, by exploring her calendar, recent
communications and social network activities, recognizes that
she intends to go to a meeting. Considering her privacy profile,
the application obtains the best possible means of public transpor-
tation from the train station to the meeting location. The mobile
“travel” application does not need to continuously send her raw
locations/trajectory data, nor additional information regarding
her current context, social activities and calendar to a service pro-
vider, as this information is analyzed locally. So, the application
detects the semantics of her mobility from data obtained from
the mobile device itself, eventually accessing external web services
(e.g., to correlate the geographic location of the user with potential
places of interest), and sends only high-level semantic requests to a
service provider when needed.

At the same time, Lucia drives a car to the meeting and her
mobile “navigation” application receives navigation instructions,
notifications, and recommendations, based on the semantically-
enriched mobility data stored, processed and analyzed on her
device, privacy preferences, and up-to-date traffic information
obtained from a third-party service. By exploring the semantic tra-
jectories of other mobile users (friends), different software compo-
nents identify that the current trajectory of Lucia allows her to pick
up Alice at the train station. The navigation application proposes to
share its trajectory with Alice and send a “meet-together” request.

After the meeting, Alice and Lucia meet Bob and Miguel, and
they decide to go out all together. By collecting and analyzing
semantic trajectories and mobility information of other moving
objects in their surroundings performing ‘“going out” activities
(having dinner, going to the cinema, having a drink, etc.), their
mobile “fun and culture” applications exchange information with
others and learn about a popular music festival being held in the
city. Their mobile applications do not need to send their locations
and trajectories to some service provider, along with all personal/
environmental/social context information necessary to semanti-
cally enrich their trajectories. Instead, they generate semantics of
their mobility data at their own devices and exchange semantic
information and knowledge according to their privacy preferences
with mobile applications/devices in the vicinity, in order to exploit
semantic collaboration and crowdsourcing.

3.2. Semantics of mobility in emergency management

When Alice, Lucia, Bob, and Miguel arrive at the festival, they
receive the recommendation to use a mobile “festival” application,
that helps them navigate through the festival facilities. Their “fes-
tival” applications obtain information from the festival service
about interesting events and schedules, receive appropriate notifi-
cations and recommendations, and exchange such information
with other visitors’ mobile applications.

In case of emergency (e.g., a fire), their mobile devices act as a
distributed semantic sensor platform providing the detection of
the semantic movement of the visitors: their activities and behav-
ior, user-generated content (messages, tags, comments, photos),

the parameters of their environment (e.g., high level of CO,), and
their physiological (e.g., injured, tired, dizzy) and emotional status
(e.g., frightened, in panic, calm). Being chronically ill, Bob carries a
wearable wireless sensor device for heart rate monitoring con-
nected to his smartphone and managed by a mobile “be healthy”
application. His device does not have air pollution sensors but
his mobile application can obtain such information from applica-
tions/devices in his surroundings. During this emergency situation,
Bob becomes very nervous, so the application detects a suspicious
heart rate and a worrying overall physiological status, as well as
high levels of CO, and NO, obtained from the mobile applica-
tions/devices in the vicinity, and alerts him. The application also
sends a request to the festival emergency service for the best path
to the closest ambulance. His mobile application dynamically helps
Bob navigate through the festival site, while continuously tracking
his physiological status and the environment conditions. Bob
receives appropriate notifications and recommendations from the
service reflecting the current crowd behavior and the rescue
process.

The visitors’ devices exchange information, semantic concepts,
and knowledge, regarding navigation and evacuation assistance,
with others moving in their surroundings. Besides, they can send
processed and semantically-enriched, but privacy-preserved,
mobility data to a “festival service” (this particular service might
be centralized) for aggregated/integrated processing, querying,
reasoning, and analysis. This enables the real-time detection of
group mobility behavior (flocks, crowds, etc.), a better understand-
ing of the emergency situation, and efficient evacuation decisions.
Moreover, other available data sources, such as geospatial informa-
tion services, social networks, semantic sensor networks, and web
services (Alonso, Casati, Kuno, & Machiraju, 2004; Alonso, 2002;
Mcllraith, Son, & Zeng, 2001; Payne & Lassila, 2004), can be
exploited.

Thanks to this collaborative approach, Alice, Lucia, Bob, Miguel,
and others, receive timely notifications with optimal directions
according to their own mobility, situation, and behavior, as well
as the overall group behavior and movements. Besides, pictures
and videos recorded by the participating mobile devices could be
analyzed and correlated with their trajectories to try to identify
the cause of the fire.

4. Research challenges towards better semantics of mobility

The study of the semantics of moving objects, their trajectories,
and mobility data, is still at its early stage and there are numerous
research challenges that need to be tackled in the coming years. In
this section, we review those challenges.

4.1. Participatory sensing for semantics of mobility

With the proliferation of mobile devices embedding sensing
capabilities, users with their mobile devices have become an
important source of sensor data (Lane et al., 2010; Lane, 2012).
Different from the traditional sensor motes in wireless sensor
networks, these mobile devices are equipped with an increasing
number of built-in sensors: GPS, microphone, camera, ambient
light sensor, accelerometer, gyroscope, compass, proximity sensor,
and even temperature and humidity sensors, possessing also
increasing computing and communication capabilities. Moreover,
through the user interaction with a mobile device, so-called virtual
and social sensors can be defined to detect active applications, user
activities, social network connections, privacy preferences, etc., but
also to provide user-generated content (videos, photos, sounds,
texts, speech messages) referenced in space and time. All these
sensors enable crowdsourcing approaches for sharing data about



the environment among users (Dobre & Xhafa, 2014; Reddy et al.,
2009; Wirz et al., 2013; Zaslavsky, Perera, & Georgakopoulos,
2013).

Advances in wearable technologies, such as the popular Google
Glasses' or Samsung Galaxy Gear,” will boost in the near future data
capture and sharing. The development of projects such as
Sensordrone® and uRing” also emphasizes the interest in adding even
more sensors to measure air pollution, personal health parameters,
and the emotional and physiological status of users.” As another
example, according to Fleming (2013), “Today’s luxury cars have
more than 100 sensors per vehicle”. These sensor data could be
shared and exploited in a Vehicular Ad Hoc Network (VANET)
(Hartenstein & Laberteaux, 2008; Olariu & Weigle, 2009) or in a
hybrid network with both vehicles and mobile users (Liu, Liu, Cao,
Chen, & Lou, 2010).

Thanks to these capabilities, each mobile device can continu-
ously capture and process spatio-temporal sensor data that repre-
sent low-level context information and that are semantically
annotated (Calbimonte, Yan, Jeung, Corcho, & Aberer, 2012). The
application of analysis, reasoning and interpretation techniques
on the low-level context augments and annotates a moving object
trajectory with high-level semantics that describe its mobility
through a certain environment and represent the moving
context/situation of such an object.

The research in this area focuses on the representation, filtering,
processing and analysis of large volumes of mobile sensor data that
describe the user movement and activities (walking, running, mov-
ing in a wheelchair, driving, etc.), interaction (talking, searching on
the Web, tagging a photo, connecting with friends, etc.), environ-
ment conditions (e.g., bad weather conditions, traffic congestion,
crowded area), and preferences (Predic, Yan, Eberle, Stojanovic, &
Aberer, 2013). Semantic techniques are being proposed for the
annotation of sensor measurements, in order to enhance the inter-
operability and provide useful contextual information (Sheth,
Henson, & Sahoo, 2008; Calbimonte, Jeung, Corcho, & Aberer,
2012). The analysis and mining of semantic mobility data and their
context should provide insights into important features of the
movement, the situation, and behavior of the moving object, as
well as the prediction of its future movements.

4.2. Semantic representation of moving objects

Another important challenge is how to represent the semantic
information associated to a moving object in a way that enables
interoperability, querying, analysis, and reasoning. The idea is to
manage knowledge about the types of moving objects, the different
profiles that they may show to others, and their mobility features,
in such a way that this knowledge can be exploited later (e.g., for
analysis or for query processing). From a representational point
of view, there should be no distinction between mobile users and
other moving objects.

We argue that the semantic information attached to a trajectory
should be represented at different levels of detail and it should be
possible to easily commute from one to another based on the query
requirements and existing privacy constraints. Thus, subsequences
of raw trajectories can be semantically annotated at different levels
of granularity. For example, at the higher level of granularity a user
moves from one city to another, where cities represent stops along
highways, which represent moves. At an intermediate level, stops
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are represented as POIs within the city, and moves as street seg-
ments. Finally, at a smaller granularity level the user moves
between buildings, floors, offices, halls, etc., along the corridors,
stairs, elevators, etc.

The concept of semantic granularity can be applied to other
semantic attributes of a moving object. For example, at the coarsest
level user physical activities could be described as steady or active;
at the finer level the steady state can be sitting, standing, or lying
down, while active can be walking, running, driving, etc. An analo-
gous granularity hierarchy and decomposition can be defined for
other semantic attributes that represent a higher-level context of
a moving object and that are generated through a semantic
annotation of raw contextual data.

Thus, the semantics of the mobility of a moving object can be
represented along various mobility dimensions and at different
levels of granularity, as illustrated in Fig. 2. In the figure, we can
see that the same geographic trajectory could be represented as
a semantic trajectory at different abstraction levels, depending
on whether the focus is on the different means of transport used,
the activity performed, the exposition to pollution, etc. For exam-
ple, during the trajectory shown in the figure, the spatial geo-
graphic area of the park corresponds to different semantic
trajectory segments: “Park” (according to the stop/move trajec-
tory), “By foot” (according to the means of transport), “low”
(regarding the CO, level), “Jogging” (regarding the general activity
performed by the user), and “Heart rate alert” (according to the
information provided by the physiological sensors worn by the
user). The figure also shows that some representation levels may
be applicable only in some cases (e.g., a specific symbolic trajectory
while the user is indoors —fourth row of trajectories in the figure-)
and that some segments of a representation level may be unknown
for some time intervals (e.g., as it is the case of the user’s mood in
the example).

The context, that semantically enriches the locations and trajec-
tories of moving objects, can be modeled and represented in differ-
ent ways, such as using key-value or markup schemes, graphic and
object-based techniques, as well as using ontologies. According to
several surveys (Baldauf, Dustdar, & Rosenberg, 2007; Bettini et al.,
2010; Perera, Zaslavsky, Christen, & Georgakopoulos, 2014), ontol-
ogies are the preferred technique for managing context and rea-
soning over it in context-aware systems, having in mind also
their shortcomings regarding high storage and performance
requirements when the amount of semantic data increases.

As the semantic annotation and enrichment of moving objects
and their trajectories is performed in a semantic way, the use of
ontologies definitely can play a key role, as well as semantic web
standards (e.g., RDFS, OWL) and related technologies, such as rea-
soners (Dentler, Cornet, ten Teije, & de Keizer, 2011; Mishra &
Kumar, 2011). Services that a moving object can access, or can find
interesting at a certain moment, depend on the continuously
changing context, i.e., a contextual trajectory; the relevant services
may change or behave differently according to the changes in the
context. Context-aware services (Baldauf et al., 2007; yi Hong, ho
Suh, & Kim, 2009) and semantic location-based services (Ilarri &
[llarramendi et al., 2011) should also fully exploit contextual
dimensions such as the user-centered context (e.g., user profile,
preferences, user’s physical/cognitive capabilities), the environ-
mental context (e.g., location, light), the temporal context (e.g.,
day of the week, season, time period), and the context of execution
(e.g., network connectivity, nearby resources). The use of semantic
trajectories can help in the representation of the moving context,
or contextual trajectory, as locations and times in a semantic trajec-
tory usually define the core of a context model. Moreover, knowl-
edge about the environment itself may also be relevant in
certain situations. For example, for objects moving within a
building the layout of the building can be relevant for indoors
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Fig. 2. Semantics of a moving object represented at different levels of granularity.

query processing, whereas in the case of objects moving freely in
the geographic space considering a geographic map as part of the
context could be useful; it is possible that even a different notion
of distance should be applied in each case (network-based distance
vs. Euclidean distance). As an example, the work presented in Ben,
Qin, and Wang (2014) focuses on indoor moving objects and
emphasizes that existing proposals consider the locations of the
moving objects but ignore the semantics of the objects themselves,
which motivates their proposal of a new indoor semantic-based
index.

Proposed solutions should not rely on centralized knowledge
repositories and rather favor distributed and fragmented knowl-
edge that can be integrated dynamically (in an ad hoc manner).
The challenge is how to integrate and combine all the semantic
aspects and manage them as required in a uniform and efficient
way. Techniques related to the fragmentation and modularization
of ontologies (d’Aquin, Sabou, & Motta, 2006; Jiménez-Ruiz, Grau,
Sattler, Schneider, & Berlanga, 2008) and techniques for the
exchange and integration of pieces of knowledge (Calvanese,
Giacomo, & Lenzerini, 2002; Choi, Song, & Han, 2006) are relevant
here.

4.3. Semantic query processing and reasoning

Even with all the semantic elements in place, a key issue is how
to exploit the semantic information in the query processing in a
way that is both efficient and effective. This involves using reason-
ing in a truly useful way that allows inferring useful facts that have
not been explicitly asserted and exploiting them during the query
processing, leading to a special type of location-dependent queries
(Ilarri, Mena, & Illarramendi, 2010) with semantic awareness.
Besides, users should be able to submit queries in a flexible way,
for example by expressing keyword-based queries (Trillo et al.,
2007), without requiring them to know any kind of schema
information or single knowledge base.

To accomplish this challenge, a variety of semantic data may
need to be managed, regarding locations, trajectories, moving
object representation, and sensor data. For example, reasoning

about the context (Bettini et al., 2010) could be a basic building
block to enable semantic-based data management on moving
objects. Reasoning about mobility data (locations, trajectories, sen-
sor data, etc.) provides the generation of high-level motion context
information based on raw sensor data and lower-level
context through inference methods and sensor fusion (Bikakis,
Patkos, Antoniou, & Plexousakis, 2008; Castelli, Mamei, Rosi, &
Zambonelli, 2009). Ontology reasoning over the ontological repre-
sentation of mobility data brings new and higher-level semantics
to user motion, based on semantic reasoning engines, such as
Pellet® and HermiT.”

As mentioned in Section 4.2, a reasoning process will also need
to take place for ontology alignment (Calvanese et al., 2002; Choi
et al., 2006) when objects exchange pieces of knowledge (i.e., frag-
ments of ontologies). Moreover, in a distributed framework there
should be support to perform some reasoning on mobile devices
with limited storage, processing and communication resources as
well as limited battery life (Bobed, Bobillo, Yus, Esteban, & Mena,
2014; Motik, Horrocks, & Kim, 2012; Ruta, Scioscia, Sciascio,
Gramegna, & Loseto, 2012; Ruta, Scioscia, Loseto, Gramegna, &
Sciascio, 2012; Patton & McGuinness, 2014, in press; Yus, Bobed,
Esteban, Bobillo, & Mena, 2013). Finally, reasoning over sensor data
in the Semantic Sensor Web is another hot topic of research
(Barbieri, Braga, Ceri, Valle, & Grossniklaus, 2010; Valle, Ceri, van
Harmelen, & Fensel, 2009).

4.4, Analysis and mining of semantic mobility data

The research in this area aims at providing an appropriate con-
ceptual modeling and representation of mobility, but more impor-
tantly the analysis of massive amounts of mobility data at different
levels of granularity. Traditional tasks for knowledge extraction
from mobility data or spatio-temporal data mining (Nanni,
Kuijpers, Koerner, May, & Pedreschi, 2008) include: searching
similar trajectories or clustering trajectories (e.g., see Pelekis et al.

8 http://clarkparsia.com/pellet.
7 http://hermit-reasoner.com.
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(2012) or Lee, Han, & Whang (2007) -this last work supports the
discovery of common subtrajectories-), based on some defined
similarity function that groups trajectories based on certain prop-
erties (e.g., space and time, speeds, accelerations, directions); clas-
sifying trajectories into predefined classes (e.g., see Lee, Han, Li, &
Gonzalez, 2008); discovering patterns (e.g., see Giannotti, Nanni,
Pinelli, & Pedreschi, 2007; Laube, 2009; Wood & Galton, 2009),
such as sequences of locations or group behavior (e.g., objects
moving together); and identifying regions of interest (ROIs) from a
set of trajectories, based on the idea that a region is interesting if
it contains a large number of moving objects that remain inside
for at least a certain amount of time (e.g., see Giannotti et al.,
2007; Uddin, Ravishankar, & Tsotras, 2011).

Mining raw data about moving objects (e.g., see Andrienko,
Andrienko, & Heurich, 2011; Bogorny, Heuser, & Alvares, 2010)
can be useful to extract information that can later be used to build
semantic trajectories. For example, in some situations the task of
automatic place labeling can be considered as a multi-class classi-
fication task (Do & Gatica-Perez, 2014). Moreover, the aggregation
and clustering of trajectories (e.g., see Dodge et al., 2012) are of
importance to understand the meaning behind the trajectories
and try to correlate them with people’s trends, habits and behavior
patterns, or to understand the behavior of crowds (Wirz et al.,
2013). According to Pejovic and Musolesi (2013), “As devices
become increasingly intelligent, their capabilities evolve beyond
inferring context to anticipating it.” Machine learning methods
and techniques play a key role here.

On the other hand, it is also possible to analyze semantic trajec-
tories to extract knowledge about their features, such as the behav-
ioral patterns of the moving objects (e.g., see Laube, 2009; Parent
et al,, 2013; Wood & Galton, 2009). Examples of behaviors that
can be considered for individual trajectories are the tourist behavior
(trajectories involving accommodation, tourist attractions, and eat-
ing places), the speeding behavior (vehicles traveling above the
speed limit), a sequence behavior (characterized by a sequence of
component predicates in a certain order), etc. There has also been
considerable interest in behaviors that apply to groups of objects
(e.g., see Laube, Imfeld, & Weibel, 2005; Nanni et al., 2008; Wood
& Galton, 2009). Some of these behaviors are collective, as they
characterize groups of trajectories, such as the meet behavior (tra-
jectories that end at the same point at the same time instant), the
flock behavior (trajectories that stay close to each other during
some time), etc. Finally, some behaviors apply to individual trajec-
tories but in relation to others, such as the leadership behavior.

Mining semantic mobility data that enable the analysis and dis-
covery of semantic trajectory patterns is a topic that has not been
extensively considered so far in the literature. Nevertheless, for
example, the work presented in Bogorny et al. (2014) has empha-
sized its importance (e.g., to discover the reasons for a traffic jam
or for the detection of frequent semantic patterns). The work pre-
sented in Ying et al. (2014) exploits the similarity of semantic tra-
jectories to cluster users for the purpose of recommending
appropriate items to them. As indicated in Parent et al. (2013),
“Considering the semantics of space [...] and the semantics of time
[...] gives more meaning to a behavior” and “the integration of tra-
jectories with contextual and semantic, spatial and temporal, infor-
mation is vital for the discovery of meaningful behaviors” (e.g.,
“Going from school to cinema on Wednesday afternoon”). In other
words, semantic trajectories enable the extraction of behaviors
that would not emerge from raw trajectories. Other proposals, such
as that of Alvares et al. (2007), also argue that adding semantic
information to trajectories facilitates trajectory data analysis in dif-
ferent application domains. Indeed, as shown in Alvares et al.
(2007), certain queries about the moving behavior of objects can
only be answered by considering trajectories along with their asso-
ciated semantic information. Moreover, Hu et al. (2013) emphasize

that semantic annotations are necessary to improve the discovery,
reuse and integration of trajectory data from different sources, and
that “semantically-enriched trajectories facilitate the discovery of
new knowledge, which otherwise may not be easily found”. The
concept of semantic behavior (Parent et al., 2013), which is
trajectory behavior whose defining predicate is based not only on
pure spatio-temporal criteria but also on other context data, is
important and its identification and exploitation is a significant
research challenge.

Moreover, the work presented in Parent et al. (2013) indicates
the need of new computational models for semantic trajectories
when very large trajectory datasets are available. Several
approaches could be considered for mining massive mobility data,
such as on-line processing using main memory and possible
approximations, historical processing that manages and analyzes
semantic trajectories already stored, and hybrid approaches that
combine both. The amount of data involved in the process may
be very high. For example, a high number of trajectories may need
to be correlated to identify group behaviors or interactions among
a large number of moving objects.

As an example of the interest of data analysis in this context,
WhereNext (Monreale, Pinelli, Trasarti, & Giannotti, 2009) exploits
trajectory pattern mining in order to predict the next location of
a moving object. The work developed in Dodge, Weibel, and
Lautenschiitz (2008) attempts to contribute to the development
of a toolbox of data mining algorithms and visual analytic tech-
niques for movement analysis by proposing a taxonomy of move-
ment patterns. The work presented in Bogorny, Kuijpers, and
Alvares (2009) proposes a specific query language (the Semantic
Trajectory Data Mining Query Language -ST-DMQL-) for knowledge
discovery from semantic trajectories and for the semantic enrich-
ment of raw trajectories (implemented in Weka-STPM (Bogorny,
Avancini, de Paula, Kuplich, & Alvares, 2011)). Another similar tool
is the M-Atlas (mobility atlas) system and its associated data mining
query language, presented in Giannotti et al. (2011). Finally, it is
interesting to indicate that a recent survey on semantic trajectories
(Parent et al., 2013), mentioned in several places along this paper,
covers data mining techniques to extract knowledge from trajecto-
ries: clustering, classification, discovery of common sequences of
movements, and identification of objects with a related movement
pattern.

The main research issues in this area are related to the difficulty
to analyze large volumes of data in real-time, as well as performing
such a task distributively on mobile devices. Although there is
some work on distributed data mining (e.g., Datta, Bhaduri,
Giannella, Kargupta, & Wolff, 2006; Kumar, Kantardzic, &
Madden, 2006; Tsoumakas & Vlahavas, 2009), it has not tackled
mobility data or mobile peer-to-peer (P2P) scenarios. As indicated
in Yu et al. (2014), limiting the power consumption of mobile
devices and increasing their performance for data analysis are
two critical issues to consider.

4.5. Semantic-based privacy protection

Location privacy is an important concern when dealing with
information about mobile users. Significant research efforts,
materialized in publications (e.g., see Beresford & Stajano, 2003;
Gorlach, Heinemann, & Terpstra, 2005; Krumm, 2009) and projects
(e.g., the GeoPKDD -Geographic Privacy-aware Knowledge Discovery
and Delivery- project, http://www.geopkdd.eu/, and the MODAP -
Mobility, Data Mining, and Privacy- project, http://www.modap.
org/), have considered the problem of protecting sensitive location
data.

The increasing availability of sensors and other data sources
may facilitate privacy attacks, due to the risk of combining data
from different sources with background knowledge. In addition,
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the semantic management of locations and trajectories may lead to
an increase of threats to privacy, since the basic movement data
can be augmented with rich information about the user, such as
points of interest, preferable routes, his/her context while moving,
and also his/her activities, behavior, and future movements, that
can be processed and analyzed by a third party to reveal very
sensitive user information. As indicated in Parent et al. (2013),
“semantic trajectories and privacy clash”; however, this conflict
can be mitigated by protecting sensitive semantic locations (e.g.,
hospitals, religious places, etc.).

The basic idea is that introducing noise in the geographic coor-
dinates of the objects whose locations must be protected is not
enough. Instead, semantic-based approaches are needed, as men-
tioned in Damiani, Silvestri, and Bertino (2011) and Parent et al.
(2013). Semantic location cloaking (Damiani et al., 2010, 2011) is
based on the idea that locations can be more or less sensitive
depending on the context, mainly the place where the person is
located, and therefore the location granularity disclosed can be
adjusted accordingly. The semantic location cloaking model was
proposed for locations in an unconstrained geographic space, but
Yigitoglu, Damiani, Abul, and Silvestri (2012) extended the model
for the case of objects moving through road networks. There are
also some approaches that focus on the anonymization of
published trajectories. For example, Monreale, Trasarti, Pedreschi,
Renso, and Bogorny (2011) present a framework for the anonymi-
zation of semantic trajectories that replaces the visited places by
more general concepts when necessary to protect privacy (e.g.,
“the Louvre museum” could be replaced by “museum” or simply
by “touristic place”); the concept of c-safety is used to denote an
upper bound for the probability to infer that a certain person has
visited a sensitive place.

Overall, the privacy problem is a difficult one. The survey pre-
sented in Parent et al. (2013) indicates the need of extending pri-
vacy-preserving solutions to behaviors. In Musolesi (2014) the
question of whether it is possible to combine large-scale mobile
data mining technologies with privacy protection is posed.

Research in this area includes the development of effective
methods that exploit background information to detect potential
privacy attacks and prevent them.

5. The SemanticMOVE framework

The management of mobility data and its exploitation by
semantic location-based services requires adapted computing
frameworks, which is also a challenge towards the semantics of
mobility. As mentioned in Section 2.3, server-based, off-line and
bottom-up approaches for the semantic enrichment of trajectories
do not fulfill all the requirements. We postulate that a generic and
scalable distributed framework comprising the key components
and functional blocks dedicated to a comprehensive semantic
management of moving objects is necessary to address the chal-
lenges described in the previous section. We propose such a frame-
work, called SemanticMOVE (http://webdiis.unizar.es/silarri/
SemanticMOVE/), that represents our vision for the semantic man-
agement of moving objects. It leverages the increasing sensing,
processing, interaction, communication and energetic capabilities
of mobile devices in a scalable way.

5.1. Framework design

The proposed framework is based on a distributed architecture
comprising software and data storage components running on
mobile devices (e.g., smartphones) and servers providing a
semantic LBS infrastructure (see Fig. 3). The SemanticMOVE mobile
components are organized in three layers:

e Mobility Data Collection Layer. The first layer performs the col-
lection and aggregation of mobility data and personal context
from an increasing number of sensors integrated in a mobile
device or attached to the human body, as well as from virtual
and social sensors that reflect user interactions and user-
generated multimedia content.

The collaborative collection of data and its pre-processing to
extract semantic information is a challenge that was described
in Section 4.1.

Semantic (Personal) Mobility Management Layer. This layer gath-
ers data from the Mobility Data Collection layer and provides a
semantic representation of personal mobility data and trajecto-
ries, based also on information integrated from available
(semantic) geospatial data, the Web, and social media services.
It performs semantics injection to mobility data managed and
stored at the mobile user device according to semantic concepts
and ontologies defined for specific domains. Based on the
semantic representation of mobility data, this layer provides
storage, query processing, reasoning, and analysis functional-
ities over the semantic representation of moving objects based
on semantic techniques such as ontologies (Ding et al., 2007;
Gruber, 1993; Horrocks, 2008; Uschold & Gruninger, 2004)
and reasoners (Dentler et al., 2011; Mishra & Kumar, 2011)
while employing privacy-preserving mechanisms. This layer
may benefit from access to a Semantic Management of Big
Mobility Data and Trajectories layer provided by existing servers.
The development of this layer faces several challenges related to
the need to support a semantic representation of moving
objects (see Section 4.2), a semantic-based query processing
(see Section 4.3), and an analysis of trajectories (see Section 4.4),
and at the same time preserving the privacy of the moving
objects involved (see Section 4.5).

Semantic Mobility Application Layer. The last layer includes a
variety of mobile semantic location-based applications (travel,
health, going out, culture, festivals, etc.) that use the Semantic-
MOVE API (Application Programming Interface) for accessing
semantic management functionalities provided by the Semantic
(Personal) Mobility Management Layer. This layer may benefit
from access to a Semantic Location-Based and Mobility Services
layer provided by existing servers.

Once all the core components of the framework are in place, the
challenge is to develop interesting applications that can maxi-
mize the benefit of SemanticMOVE. Whereas the existence of
a specific “killer application” is unlikely, we believe that the
flexibility of a framework like SemanticMOVE would enable a
variety of interesting applications and services. A key to achieve
this goal relies on an appropriate API design and interoperabil-
ity mechanisms. In Section 3, we presented two illustrative use
case scenarios.

If a user requires a smart mobility service, his/her mobile
semantic mobility application sends a part of the semantic mobility
data stored on the user device to an appropriate Semantic Location-
based and Mobility Service, which returns explicit responses (reac-
tive behavior) or sends notifications and recommendations of both
relevant information and useful services (proactive behavior). As
mentioned before, to provide smarter mobility to mobile clients,
these semantic mobility services can rely on the SemanticMOVE
Server components and an API to access their functionalities for
the Semantic Management of Big Mobility Data and Trajectories.
The SemanticMOVE Server components perform the aggregation
of semantic mobility data collected from a large number of mobile
users/moving objects, and provide query processing, reasoning,
analysis, and mining, over massive mobility data sets. They enable
the detection of aggregated mobility patterns and trajectories,
collective activities and behavior, as well as complex situations


http://webdiis.unizar.es/silarri/SemanticMOVE/
http://webdiis.unizar.es/silarri/SemanticMOVE/

Physical, Virtual,

User Generated User Profile & Privacy

Content

Socill_iensors 1 G- .4 5

Preferences

Mobility Data Collection Layer

Semantic (Personal) Mobility Management Layer

External sources

Q 2 ‘g 3 Semantic Representation of Personal Mobility Data and .
. SE D Trajectories 83 Geospatial Data
SemanticMOVE [ & S . z 2 :
i iy B S E Query Inference & Analysis & a2 and Services
Mobile Client o0 Processing Reasoning Mining L
\ SemanticMOVE API \
Incentive Semantic Mobility Application Layer Social Networks &
management for Fun and Media N -
P2P cooperation ‘ Travel HNavigation‘ o e ‘ Festival H Be healthyHFriends” ‘ Q i/
2 foursquare BRRAIIE
Shared Knowledge Continuous Notification| | Response Request
and Ontologies & Recommendation (snapshot info/ (snapshot ;)r cqntln)uous
. (information, services) services query/service ‘
Other SemanticMOVE B ) Semantic Web
P i Sources
Mol?lle Cllgnts | Semantic Location-Based and Mobility Services | Ny
(Moving Objects) Request
— [ SemanticMOVE API |
3 gzancaenptlg Semantic Management of Big =
Request - Response Mobility Data and Trajectories % 5 Semantic Sensor
% - Representation and Storage m §§ Networks < Jeo
> ) og00° 8%
Response - Agregation and Filtering 2 E\.Z' o e
N - Querying and Reasoning £ E
_ . g o
———/1 - Analysis and Mining %]

Other SemanticMOVE Servers

SemanticMOVE Server

Fig. 3. Architecture of the SemanticMOVE framework.

(e.g., interesting places, traffic congestion, popular city routes, or
crowded evacuation paths in an emergency situation). A Semantic-
MOVE Server maintains and manages semantic concepts and
knowledge related to specific application domains and employs
semantic-based privacy preservation mechanisms over a
potentially-large number of mobile users. The use of ontologies
facilitates the interoperability among components in this heteroge-
neous environment.

In the rest of this section, we first analyze the potential deploy-
ment options of SemanticMOVE. Then, we summarize an analysis
of its feasibility.

5.2. Distributed deployment

As opposed to other related work, we envision a quite generic
architecture, supporting a fully distributed scenario for the manage-
ment of semantics of moving objects. Thus, each moving object can
collect, represent, and analyze its own semantic mobility data
and trajectories, and reason over them locally. For this purpose,
it can share and exchange semantic mobility data, trajectories,
and semantic concepts/knowledge, with other moving objects/
users in the vicinity over ad hoc wireless networks. Our framework
includes fixed servers, but not as a requirement but rather as an
additional element of an ecosystem where the distributed and ad
hoc cooperation among moving objects plays a key role; this coop-
eration could be encouraged by exploiting some incentive mecha-
nism (Dias, Rodrigues, & Zhou, 2014; Wolfson, Xu, & Sistla, 2004;
Xu, Wolfson, & Rishe, 2006), and semantic techniques can be used
to enable the interoperability and data sharing between the
devices (e.g., see Mandreoli, Martoglia, Penzo, & Sassatelli, 2009).
So, we could envision several possible deployments such as those
shown in Fig. 4:

e Purely Centralized (single node), where a single fixed computer
(infrastructure node) plays the role of SemanticMOVE Server,
other mobile devices act as SemanticMOVE Clients by

communicating information and requesting services from the
centralized service provider, and there may also be other mobile
devices representing moving objects that provide information
but do not request any service (e.g., urban buses that make their
location publicly available for the citizens).

Distributed with light clients, where several SemanticMOVE
Servers exist. They can host similar or complementary func-
tions, communicate with mobile appliances, and possibly
between them. The distribution of responsibilities to the differ-
ent service providers could be determined, for example, based
on geographic criteria: each provider could be in charge of
information and requests concerning a certain spatial region
(as in approaches like Ilarri, Mena, & Illarramendi, 2006).
Distributed hybrid, where we also introduce more powerful
mobile devices that encapsulate both SemanticMOVE Client
components and SemanticMOVE Server components. So, not
only fixed servers but also those devices can provide advance
mobility services to other devices.

Purely Distributed, where only mobile nodes participate, without
the assistance of fixed servers. Mobile devices encapsulate a
SemanticMOVE Server that others can access, possibly using
short-range ad hoc wireless communications.

Distributed architectures provide key benefits for the manage-
ment and analysis of large amount of data, such as (Tsoumakas &
Vlahavas, 2009): reduced storage cost (in comparison with a cen-
tralized approach that would need a very large storage space to
keep all the data in a single place), reduced communication cost
(as large volumes of data do not need to be communicated to a
centralized repository), reduced computational cost (the data dis-
tribution can be exploited to perform simpler tasks in parallel),
and better protection for private and sensitive data (as opposed
to a centralized data collection approach, each participant in the
distributed environment can keep control over its own data).

The use case scenarios presented in Section 3 illustrate how
semantic mobility data can be exploited to provide dynamic
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information and assistance in various situations while preserving
privacy. It should be noted that the proposed framework can
accommodate small applications as well as generic and complex
applications, although in the examples of Section 3 we mentioned
the use of a number of specialized small applications.

5.3. Feasibility analysis

In Section 4, we analyzed research challenges that must be tack-
led to achieve a comprehensive management of moving objects
and the semantics of mobility. In the two previous subsections,
we have just described our framework proposal to address these
challenges, as well as its deployment options. Now, we will provide
some insights about the feasibility of the SemanticMOVE
framework to support the development of real-world smart
mobility systems and applications, summarized in Table 1.

We indicate the main challenges and difficulties to make the
SemanticMOVE framework a reality. Besides, we briefly review
some development approaches that can positively contribute and
lead towards a full implementation of the SemanticMOVE frame-
work providing its support for the development of smart mobility
applications, such as those presented in Section 3. Some key
research and development challenges that lie ahead are the
following ones:

e Collaborative data collection. Participatory and mobile crowd-
sensing are a hot research topic nowadays. The study presented
in Ganti, Ye, and Lei (2011) indicates several research challenges
in this area, such as: the pre-processing of data on the mobile
devices (localized analytics) while coping with their limited
resources (in terms of energy, bandwidth, and processing capa-
bilities), the need to preserve the privacy of the participating
users, the difficulty to ensure data integrity (e.g., to avoid the
injection of false information), the difficulty of analyzing large
amounts of data provided by a collection of mobile devices
(aggregate analytics), and the interest of developing a unified
common architecture rather than independent application silos.
The study in Shilton (2012) indicates the challenges of

management, curation, and preservation of participatory per-
sonal data. The work presented in To, Ghinita, and Shahabi
(2014) focuses on the problem of location privacy in spatial
crowdsourcing scenarios (people carrying mobile devices
perform certain data collection tasks -e.g., taking pictures of
an accident- by physically moving to specific places). The
challenges related to the collection, processing, and analysis of
potentially-large amounts of streaming data obtained from
sensors attached to a mobile device, as well as virtual sensors
that represent user interaction with mobile applications and
services, are emphasized in Brouwers and Langendoen (2012);
Jayaraman, Perera, Georgakopoulos, and Zaslavsky (2013,
2014); Zaslavsky, Jayaraman, and Krishnaswamy (2013).
Semantic representation of moving objects. Although a significant
amount of work has been invested in the semantic modeling of
moving objects, and particularly in the modeling of semantic
trajectories, this is still an active research and development
area. There are proposals that focus on the semantic representa-
tion of some aspects of moving objects (e.g., their trajectory,
their context, the services they can access, etc.), but a unified
approach that takes all those elements into account is still miss-
ing. Moreover, as we highlighted in Section 4.2, we think that
the biggest challenge is the management of semantic models
in a distributed way, where different moving objects may have
complementary views of the world that need to be reconciled
and combined.

Semantic query processing and reasoning. As mentioned in
Section 4.3, interesting work has been developed on context-
awareness, efficient query processing on mobile environments,
reasoning, and semantic search. But again, all these elements
should be taken jointly into account, and an appropriate
abstraction layer that enables the exploitation of the functional-
ities should be provided.

Analysis and mining of semantic trajectories. As far as we know,
large-scale spatio-temporal analytics is a quite unexplored
research area. According to what we described in Section 4.4,
inferring higher-level semantics (such as situations affecting a
group of moving objects) from a large set of individual



Table 1

Summary of difficulties for the realization of the SemanticMOVE framework.

Challenges

Some sample contributors

Difficulties

(1) Collaborative data collection: representation,
semantic enrichment, and on-device analysis of
potentially-large amounts of data

(2) Semantic representation of moving objects:
integrated semantic representation of all the
aspects of moving objects (trajectory, context,
accessible services, etc.), modular and distributed
management of semantic models

(3) Semantic query processing and reasoning:
integrated approach that combines context-
awareness, efficient query processing on mobile
environments, reasoning, and semantic search

(4) Analysis and mining of semantic trajectories: mobile
analytics and large-scale spatio-temporal analytics

(5) Privacy protection: preventing privacy attacks
using semantic techniques

Semantic annotation and fusion of sensor data:
Calbimonte and Yan et al. (2012) and Zafeiropoulos
et al. (2008)

Mobile participatory sensing: Predic et al. (2013)
Mobile crowd-sensing frameworks: Sherchan et al.
(2012) and Jayaraman et al. (2013, 2014)

Semantic location granules: Bernad et al. (2013)
Semantic trajectories: Parent et al. (2013) and Fileto
et al. (2013)

Ontology mapping: Choi et al. (2006)

Context modeling: Bettini et al. (2010)

Semantic context management: Hu et al. (2009) and
Konstantinou et al. (2007)

Keyword-based queries: Trillo et al. (2007)

Context reasoning: Bettini et al. (2010), Bikakis et al.

(2008) and Tiberghien et al. (2012)

Semantic reasoning on mobile devices: Ruta, Scioscia,

and Sciascio et al. (2012), Yus et al. (2013), Bobed
et al. (2014), Motik et al. (2012), Patton and
McGuinness, 2014 (in press), Ruta et al. (2012) and
Kim et al. (2010)

Aggregation and clustering of trajectories: Dodge
et al. (2012)

Mobility data mining: Haghighi et al. (2013), Predic
and Stojanovic (2012) and Stahl et al. (2012)
Mobile and ubiquitous semantic analytics: Ye et al.
(2012) and Ermilov et al. (2014)

Fine-grained cloaking and semantic mobility privacy
preservation: Damiani et al. (2011), Kapadia et al.
(2008), Ghosh et al. (2012), Lee et al. (2011) and

Medium. There is a need to ensure the scalability in
managing large amounts of sensor data on the mobile
devices, as well as to progress on automatic semantic
annotation techniques. Further research on (peer-to-
peer) P2P exchanges is also needed

Medium/|High. Several proposals concern the semantic
representation of different aspects of moving objects,
but the distributed management of semantic models,
where moving objects may exchange and reconcile
knowledge, is a quite unexplored area

Medium. Several proposals have been developed for
each of those subproblems. These areas are still under
active research

High. Although there is work on spatio-temporal data
mining, it usually does not consider very large data
sets. Performing analytics in a distributed
environment on mobile devices is also a real
challenge nowadays

High. A higher amount of data combined with
semantically-enhanced information and other
background knowledge implies a higher privacy risk.

Celdran et al. (2014)

How to ensure privacy in this environment does not
seem clear for the moment

trajectories deserves further research, as well as exploiting
those semantically-enhanced data for more powerful analysis.
The research path widens considerably if we consider the
interest of performing analysis tasks distributively on mobile
devices.

e Privacy protection. This is another key pending challenge and a
major concern in mobile computing in general. As explained
in Section 4.5, the semantic enrichment of data increases the
chances of privacy attacks, but at the same time semantic tech-
niques are needed in order to ensure that potential attacks are
prevented. This is an important difficulty, as it would require
considering the different types of data sources and background
knowledge that could be correlated to try to infer some infor-
mation that should be kept private.

So, whereas there are still open research areas to make it a real-
ity, we consider that further research and development advances
could contribute to the realization of the proposed framework.
Some of the existing challenges are related to the consideration
of a distributed environment with heterogeneous moving objects,
that may use different semantic representations and need to
exchange data in a peer-to-peer way.

Some recent initiatives that could be considered quite aligned
with the research issues considered in the SemanticMOVE frame-
work are SHERLOCK® (System for Heterogeneous mobilE Requests by
Leveraging Ontological and Contextual Knowledge) (Yus, Mena, Ilarri,
& Illarramendi, 2013; Yus, Mena, Ilarri, & Illarramendi, in press)
and the SEEK (SEmantic Enrichment of trajectory Knowledge discovery)
project.” SHERLOCK is a distributed system whose goal is to provide

8 http://sid.cps.unizar.es/SHERLOCK/.
9 http://www.seek-project.eu.

LBSs based on the use of semantic techniques and mobile agents
(Milojicic et al., 1999; Trillo, Ilarri, & Mena, 2007). The participating
objects/devices can cooperate and exchange data and knowledge
among them to relieve the user from having to know, represent
and use such knowledge himself/herself. The system exploits abduc-
tive and deductive reasoning to infer information to answer user
requests continuously. SEEK focuses on researching methods to
extract knowledge from large amounts of mobility data. As an exam-
ple of the contributions of SEEK, the Baquara ontology presented in
Fileto, Kriiger, Pelekis, Theodoridis, and Renso (2013) provides a
conceptual framework for the semantic enrichment of mobility data
using annotations based on Linked Data (Bizer, Heath, & Berners-Lee,
2009).

6. Conclusions

In this position paper, we have outlined some research chal-
lenges that lie in the path towards smart mobility and we have pre-
sented SemanticMOVE, a framework designed for the semantic
management of moving objects. The proposed distributed, general,
and scalable framework can bring significant benefits. Semantic
locations and trajectories enable the development of advanced
LBSs that should provide more intelligent, proactive and valuable
services to users navigating in outdoor and indoor environments.
Moreover, the processing, analysis and mining of semantic loca-
tions and trajectories provide insights into the semantics of move-
ment and the recognition of user activities, behaviors, and future
movements.

SemanticMOVE benefits from the increasing sensing, process-
ing, interaction, communication and energetic capabilities of
mobile devices in a scalable way. As opposed to other related work,
it is a quite generic architecture, supporting a fully distributed
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environment for the management of the semantics of moving
objects. So, each moving object can collect, represent, and analyze
its own semantic mobility data and trajectories, and reason over
them locally. Moving objects exchange with each other semantic
mobility data, trajectories, and semantic concepts/knowledge,
exploiting ad hoc wireless networks. The framework includes fixed
servers only as an additional optional element, as the ad hoc coop-
eration among moving objects plays the fundamental role, rather
than the traditional client/server interactions with centralized
servers. We have presented two use case scenarios that illustrate
the usefulness of the framework and show useful tasks that exist-
ing proposals cannot flexibly accomplish. Both small applications
and generic and complex applications would take advantage of
the functionalities of such a framework. The framework can be
useful in a variety of mobile computing scenarios, such as in the
case of smart cities (Ilarri, Stojanovic, & Ray, 2014).

Although the need and foundations of semantic management of
mobility data have been already set up, significant research and
innovations in all the identified challenges are needed to make
our vision a reality. Some recent initiatives try to tackle the prob-
lems mentioned. However, more efforts are needed to solve all the
challenges. We hope that this vision paper will encourage future
work in these areas.
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