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Abstract

This paper deals with two-equation models describing solute transport in highly heterogeneous porous systems and more partic-
ularly dual permeability structures composed of high- and low-permeability regions. A macroscopic two-equation model has been pre-
viously proposed in the literature based on the volume averaging technique [Ahmadi A, Quintard M, Whitaker S. Transport in
chemically and mechanically heterogeneous porous media V: two-equation model for solute transport with adsorption, Adv Water
Resour 1998;22:59–86; Cherblanc F, Ahmadi A, Quintard M. Two-medium description of dispersion in heterogeneous porous media:
calculation of macroscopic properties. Water Resour Res 2003;39(6):1154–73]. Through this theoretical upscaling method, both con-
vection and dispersion mechanisms are taken into account in both regions, allowing one to deal with a large range of heterogeneous
systems.

In this paper, the numerical tools associated with this model are developed in order to test the theory by comparing macroscopic con-
centration fields to those obtained by Darcy-scale numerical experiments. The heterogeneous structures considered are made up of low-
permeability nodules embedded in a continuous high-permeability region. Several permeability ratios are used, leading to very different
macroscopic behaviours. Taking advantage of the Darcy-scale simulations, the role of convection and dispersion in the mass exchange
between the two regions is investigated.

Large-scale averaged concentration fields and elution curves are extracted from the Darcy-scale numerical experiments and compared
to the theoretical predictions given by the two-equation model. Very good agreement is found between experimental and theoretical
results. A permeability ratio around 100 presents a behaviour characteristic of ‘‘mobile–mobile’’ systems emphasizing the relevance of
this two-equation description. Eventually, the theory is used to set-up a criterion for the existence of local equilibrium conditions. The
potential importance of local-scale dispersion in reducing large-scale dispersion is highlighted. The results also confirm that a non-equi-
librium description may be necessary in such systems, even if local-equilibrium behaviour could be observed.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The large spatial variability of hydraulic conductivity
plays a major role in groundwater solute transport. These

heterogeneities over a wide range of length scales usually
lead to anomalous dispersion at the field-scale. Since only
a limited amount of data is generally available, these heter-
ogeneities in physical characteristics are often described
through a geostatistical approach. With such a description,
flow and transport reflect the uncertainty associated with
the geological model. Within this general stochastic frame-
work, two different approaches are used.
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The first approach entails a stochastic formulation of
the flow equations, i.e., physical properties are represented
as random variables. The resulting flow quantities are then
also random variables, described in terms of expected val-
ues and higher statistical moments [3–7]. The second
approach is a Monte Carlo methodology that requires
the generation of multiple realizations of the heterogeneous
formation. The transport problem is then considered from
a ‘‘deterministic’’ point of view. In this second approach,

the probability distribution of different quantities is deter-
mined through simulations over multiple realizations.

Indeed, using the second method, highly detailed geosta-
tistical realizations are typically generated in order to cap-
ture all the scales of heterogeneity. Due to this high level of
description, large-scale transport problems are computa-
tionally expensive (see an example in [8]). For this reason,
some type of coarsening, or upscaling of the geologic
model must be performed before it can be used for field-

Nomenclature

Agx area of the boundary between the g and the x-
region contained in the large-scale averaging
volume V1, m2

bgg vector fields that maps rfhcibgg
g onto ~cg, m

bgx vector fields that maps rfhcibxg
x onto ~cg, m

bxg vector fields that maps rfhcibgg
g onto ~cx, m

bxx vector fields that maps rfhcibxg
x onto ~cx, m

C* large-scale average concentration associated
with a one-equation model, mol m�3

hcibg Darcy-scale intrinsic average concentration in
the g-region, mol m�3

hcibx Darcy-scale intrinsic average concentration in
the x-region, mol m�3

fhcibgg
g large-scale intrinsic average concentration in the

g-region, mol m�3

fhcibxg
x large-scale intrinsic average concentration in the

x-region, mol m�3

~cg spatial deviation concentration in the g-region,
mol m�3

~cx spatial deviation concentration in the x-region,
mol m�3

Deff Darcy-scale effective diffusivity, m2 s�1

D* Darcy-scale dispersion tensor, m2 s�1

D�g Darcy-scale dispersion tensor in the g-region,
m2 s�1

D�x Darcy-scale dispersion tensor in the x-region,
m2 s�1eDg spatial deviation of the dispersion tensor in the
g-region, m2 s�1eDx spatial deviation of the dispersion tensor in the
x-region, m2 s�1

D��gg dominant dispersion tensor for the g-region
transport equation, m2 s�1

D��gx coupling dispersion tensor for the g-region
transport equation, m2 s�1

D��xx dominant dispersion tensor for the x-region
transport equation, m2 s�1

D��xg coupling dispersion tensor for the x-region
transport equation, m2 s�1

l size of the unit cell, m
lg characteristic length associated with the g-re-

gion, m

lx characteristic length associated with the x-re-
gion, m

L characteristic length associated with the large
scale, m

li lattice vectors, m
ngx unit normal vector directed from the g-region

towards the x-region
rg scalar field that maps ðfhcibxg

x � fhcibgg
gÞ onto

~cg

rx scalar field that maps ðfhcibxg
x � fhcibgg

gÞ onto
~cx

t time, s
Vg volume of the g-region contained in the averag-

ing volume V1, m3

Vx volume of the x-region contained in the averag-
ing volume V1, m3

V1 large-scale averaging volume for the g–x sys-
tem, m3

hvig Darcy-scale filtration velocity in the g-region,
m s�1

{hvig}g intrinsic regional average velocity in the g-re-
gion, m s�1

~vg spatial deviation for the filtration velocity in the
g-region, m s�1

hvix Darcy-scale filtration velocity in the x-region,
m s�1

{hvix}x intrinsic regional average velocity in the x-re-
gion, m s�1

~vx spatial deviation for the filtration velocity in the
x-region, m s�1

{hvi} superficial average velocity, m s�1

a* mass exchange coefficient for the g–x system,
s�1

aL Darcy-scale longitudinal dispersivity, m
aT Darcy-scale transversal dispersivity, m
dij Kronecker symbol
eg total porosity in the g-region
ex total porosity in the x-region
ug volume fraction of the g-region
ux volume fraction of the x-region
H non-equilibrium criterion



scale numerical simulations. This upscaling is complicated
by the fact that very fine-scale heterogeneities can have a
major impact on simulation results, and these must be
accurately accounted for in the macroscopic model.

Upscaling procedures are commonly used to coarsen
these highly detailed geostatistical realizations to scales
more suitable for the flow simulation. Examples of proce-
dures available for the case of single-phase flow can be
found in the literature [9–13]. In most cases, it is assumed
that the macroscopic model represents the fine-scale heter-
ogeneities contained in a grid block, while the large-scale
heterogeneities are taken into account by the spatial dis-
cretization of the entire simulation. In the framework of
solute transport, a non-ideal behavior, i.e., a non-Fickian
response, may be observed at the field-scale [14–16], fea-
turing an early breakthrough and a long tailing that can-
not be represented by a classical advection-dispersion
equation, i.e., a simple one-equation model. Interpreta-
tions of field-scale transport experiments usually reflect
a scale-dependent dispersivity [17–21]. These phenomena
are partly attributed to solute transfer between different
regions with highly contrasted properties [22,23]. Some
classes of such highly heterogeneous structures may often
be represented by a simplified system constituted of two
homogeneous porous media. In this bicontinuum model,
the heterogeneous porous medium is represented by a
high- and a low-permeable region. Two macroscopic con-
centrations are defined associated with each region. If sol-
ute transport characteristic times are relatively different in
the two regions, a significant difference between these two
large-scale concentrations is observed. This phenomenon
is called large-scale mass non-equilibrium, and must be
taken into account in large-scale transport models [24].
Two-medium descriptions, or two-equation models, are
commonly used to represent these processes. Even with
complex systems like natural formations, this approach
proved to be useful in many practical situations [25–29].
Usually, convection and dispersion are neglected in the
less permeable zone, which is called ‘‘immobile’’ zone.
Only the exchange of mass with the more permeable zone,
‘‘mobile’’ zone, is considered. To represent this mass
transfer, some mixed models can be generated by coupling
an averaged description of the flow in the ‘‘mobile’’ zone
with a local-scale detailed description of the Fickian diffu-
sive transport in the ‘‘immobile’’ zone considered, most
often and for simplicity reasons, as rectangular, cylindri-
cal or spherical aggregates [30–33]. An alternative is to
approximate this mass exchange by a first-order kinetic
[22,34–41]. Indeed, it is well-known that this mass
exchange is a transient phenomenon and that it may exhi-
bit memory effects. Therefore, limitations of the first-
order kinetic models may be unacceptable in some cir-
cumstances. To catch most of the characteristic times
involved during the exchange of mass in complex hetero-
geneous structures, multiple-rate mass transfer models
[42–44], or fractal developments [45] were proposed.

If the permeability contrast between the different zones
is less important, advection may become significant in the
less permeable zone, and several works have shown the rel-
evance of taking this effect into account [46–48]. Following
this idea, the two-equation models were revisited to take
into account convection and dispersion mechanisms in
both regions [1,40,49–56]. These models are often called
‘‘mobile–mobile’’ models.

One of the crucial problems encountered when using
two-equation models is the determination of the large-
scale ‘‘effective’’ properties embedded in the model. For
idealized cases, some a priori estimates of the mass
exchange coefficient have been proposed [35,57,53].
Numerical simulation of local-scale transport can be used
to evaluate macroscopic properties [46,48,58]. However, in
general, these properties are interpreted from experimen-
tal data. With this approach, macroscopic properties of
a heterogeneous sample are obtained using a curve-fitting
procedure [59–63]. Recently, Ahmadi et al. [1] derived a
two-equation model using the large-scale volume averaging

method. This method provides three closure problems that
give an explicit link between the different scales, and
makes it possible to determine directly the macroscopic
properties associated with any heterogeneous double-per-
meability system. Cherblanc et al. [2] proposed an original
numerical procedure to solve these three closure prob-
lems. The developed tools were used to discuss the influ-
ence of the local-scale characteristics on the large-scale
properties, in the case of a nodular system. The theory
was tested favorably in Ahmadi et al. [1] in the case of
stratified systems. The purpose of this paper is to empha-
size the ability of the proposed two-equation model to
represent the non-ideal behavior of more general hetero-
geneous systems.

The scope of the paper is limited to the comparison
between theoretical predictions and numerical experi-
ments. For readability of the paper, the basic ideas of
the volume averaging technique used to derive the two-
equation model are summarized in the next section. The
aim of Section 3 is to make a comparison between the
theoretical predictions obtained from the present large-
scale model and some reference solutions. These reference
solutions are built using transport simulations performed
at the local-scale or Darcy-scale, i.e., using a fine discret-
ization of the heterogeneities. The numerical procedure
used for the large-scale transport simulation is described.
Finally, some comparisons are presented and the quality
of the two-equation description is discussed. In the last
section, the possible existence of non-equilibrium condi-
tions for nodular systems is investigated numerically as
a function of the system permeability and dispersivity
ratios. Using the large-scale representation given by the
two-equation model, the concentration difference between
the two regions can be computed from very small to very
large times, allowing us to analyze in detail the behavior
of the system.



2. Theoretical background

The flow of a tracer is considered in a double-permeabil-
ity system, as illustrated in Fig. 1. At the local-scale or
Darcy-scale, the problem is entirely defined by the follow-
ing equations [64–66]:

eg

ohcibg
ot
þ hvig � rhci

b
g ¼ r � ðD�g � rhci

b
gÞ in the g-region

ð1Þ
B:C:1 hcibg ¼ hci

b
x at Agx ð2Þ

B:C:2 ngx � ðD�g � rhci
b
gÞ ¼ ngx � ðD�x � rhci

b
xÞ at Agx ð3Þ

ex
ohcibx

ot
þ hvix � rhci

b
x ¼ r � ðD�x � rhci

b
xÞ in the x-region

ð4Þ

where hcibg represents the intrinsic averaged concentration
in the g-region, while hvig represents the filtration velocity.
The choice of the tracer case implies that velocity fields are
obtained independently from the tracer transport problem.
The one-phase flow problem received a lot of attention in
the literature, and, in particular, the introduction of
large-scale regional velocities, which is relevant to our
study, are discussed by Quintard and Whitaker [67]. One
of the difficulties of the subsequent upscaling is that the dis-
persion tensors, D�g and D�x, are position and velocity-
dependent.

The complete procedure for upscaling the transport
equations that led to the two-equation model are discussed
elsewhere [1,24]. Consequently, only the basic ideas are
summarized in this paper. The volume averaging operator
is defined as

fhwiag ¼ uafhwiag
a ¼ 1

V 1

Z
V a

hwia dV ð5Þ

where ua represents the volume fraction of the a-region gi-
ven by

ua ¼
V a

V 1
ð6Þ

Volume averaged equations are generated by expressing
any local-scale quantity associated with the a-region, hwia,
as the sum of the associated volume averaged large-scale
quantity, {hwia}a, and a fluctuating component, ~wa, [68–
70]; i.e., we have

hwia ¼ fhwiag
a þ ~wa ð7Þ

On the basis of these definitions and using large-scale aver-
aging theorems, mathematical developments can be per-
formed. The large-scale averaging technique calculates
the transport equations and the effective properties at a gi-
ven scale by an averaging process over the equations corre-
sponding to the lower scale. Several assumptions have to be
introduced: separation of scales and the possibility of lo-
cally representing the medium by a periodic system. This
last assumption means that, at a given point, the system
is entirely characterized by a single unit cell as complex
as necessary, to keep all the problem features.

Within the framework of the volume averaging theory,
the periodic assumption has given reasonable results, even
for disordered media [8,71]. Moreover Pickup et al. [72]
compared several numerical approaches for the calculation
of effective permeability, their overall conclusion was that
the most accurate and robust boundary conditions to per-
form upscaling was periodicity.

The large-scale mass non-equilibrium condition corre-
sponds to processes in which large-scale concentrations
are significantly different for the two regions, thus calling
for a two-medium representation. Under some length-scale
and time-scale constraints, a first-order development in
term of the large-scale concentration difference leads to

Fig. 1. The three scales of the problem: the pore-scale composed of a solid phase (r) and a fluid phase (b); the local-scale consists of two embedded
homogeneous regions (g and x); the large-scale that still presents some macroscopic heterogeneities.



the following set of two large-scale equations [1,24]. In the
g-region, we have

egug

ofhcibgg
g

ot
þ ugfhvigg

g � rfhcibgg
g

�r � dgðfhcibgg
g � fhcibxg

xÞ
h i

� ugg � rfhcibgg
g

� ugx � rfhcibxg
x

¼ r � D��gg � rfhci
b
gg

g
h i

þr � D��gx � rfhci
b
xg

x
h i

� a� fhcibgg
g � fhcibxg

x
� �

ð8Þ

while the large-scale equation for the x-region is

exux

ofhcibxg
x

ot
þ uxfhvixg

x � rfhcibxg
x

�r � dxðfhcibxg
x � fhcibgg

gÞ
h i

� uxx � rfhcibxg
x

� uxg � rfhcibgg
g

¼ r � D��xx � rfhci
b
xg

x
h i

þr � D��xg � rfhci
b
gg

g
h i

� a� fhcibxg
x � fhcibgg

g
� �

ð9Þ

All large-scale effective properties appearing in the two-
equation model (D��gg,dx,a*, . . .) are given explicitly as func-
tions of the local-scale properties and some closure
variables

D��gg ¼ ugfD�g � ðIþrbggÞ � ~vgbgggg ð10Þ
D��gx ¼ ugfD�g � rbgx � ~vgbgxgg ð11Þ
D��xx ¼ uxfD�x � ðIþrbxxÞ � ~vxbxxgx ð12Þ
D��xg ¼ uxfD�x � rbxg � ~vxbxggx ð13Þ

ugg ¼ �uxg ¼ cgg ¼ �
1

V 1

�
Z

Agx

ngx � ðhvigbgg �D�g � rbgg �D�gÞdA ð14Þ

uxx ¼ �ugx ¼ cxx ¼ �
1

V 1

�
Z

Agx

nxg � ðhvixbxx �D�x � rbxx �D�xÞdA ð15Þ

dg ¼ ugf~vgrg �D�g � rrggg ð16Þ
dx ¼ �uxf~vxrx �D�x � rrxgx ð17Þ

a� ¼ � 1

V 1

Z
Agx

ngx � ðhvigrg �D�g � rrgÞdA

þ 1

V 1

Z
Agx

nxg � ðhvixrx �D�x � rrxÞdA ð18Þ

The closure variables, bgg, bxx, bgx, bxg, rg, rx, are the solu-
tions of three closure problems defined over the unit cell [1].

Problem I

r � ðhvig � bggÞ þ ~vg ¼ r � ðD�g � rbggÞ
þ r � eD�g � u�1

g cgg ð19aÞ
B:C:1 bgg ¼ bxg at Agx ð19bÞ

B:C:2 ngx �D�g � rbgg þ ngx �D�g
¼ ngx �D�x � rbxg at Agx ð19cÞ

r � ðhvix � bxgÞ ¼ r � ðD�x � rbxgÞ þ u�1
x cgg ð19dÞ

Periodicity bggðrþ liÞ ¼ bggðrÞ;
bxgðrþ liÞ ¼ bxgðrÞ i ¼ 1; 2; 3 ð19eÞ

Average fbgggg ¼ 0; fbxggx ¼ 0 ð19fÞ
Problem II

r � ðhvig � bgxÞ ¼ r � ðD�g � rbgxÞ þ u�1
g cxx ð20aÞ

B:C:1 bgx ¼ bxx at Agx ð20bÞ
B:C:2 ngx �D�g � rbgx ¼ ngx �D�x � rbxx

þ ngx �D�x at Agx ð20cÞ
r � ðhvix � bxxÞ þ ~vx ¼ r � ðD�x � rbxxÞ

þ r � eD�x � u�1
x cxx ð20dÞ

Periodicity bgxðrþ liÞ ¼ bgxðrÞ;
bxxðrþ liÞ ¼ bxxðrÞ i ¼ 1; 2; 3 ð20eÞ

Average fbgxgg ¼ 0; fbxxgx ¼ 0 ð20fÞ

Problem III

r � ðhvigrgÞ ¼ r � ðD�g � rrgÞ � u�1
g a� ð21aÞ

B:C:1 rg ¼ rx þ 1 at Agx ð21bÞ
B:C:2 ngx �D�g � rrg ¼ ngx �D�x � rrx at Agx ð21cÞ
r � ðhvixrxÞ ¼ r � ðD�x � rrxÞ þ u�1

x a� ð21dÞ
Periodicity rgðrþ liÞ ¼ rgðrÞ;

rxðrþ liÞ ¼ rxðrÞ i ¼ 1; 2; 3 ð21eÞ
Average frggg ¼ 0; frxgx ¼ 0 ð21fÞ

These problems must be solved on a unit cell representative
of the heterogeneous structure. An original numerical pro-
cedure has been proposed by Cherblanc et al. [2] able to
deal with any double-region geometry. The main strength
of the large-scale averaging method is to give an explicit
relationship between the local structure and the large-scale
properties. This allows one to study precisely how macro-
scopic properties depend on the local-scale characteristics.
Following this idea, sensitivity analysis and discussions can
be found in Cherblanc et al. [2].

In order to use the two-equation model with confidence,
we need to be able to predict breakthrough curves or con-
centration fields for any double-permeability system, as
complex as required. Since the exchange of mass is a tran-
sient phenomena, first-order theories have limitations
[2,41,42]. Indeed, the determination of an ‘‘optimal’’ mass
exchange coefficient will depend on the geometry consid-
ered and the boundary conditions imposed as well as the
criterion used to define this optimum. Nevertheless, the
accuracy of such a model may be sufficient for many prac-
tical situation when considering the large number of uncer-
tainties. In this framework, it is interesting to evaluate the
impact of these limitations on the ability of the two-equa-
tion model to approximate the averaged behavior of two-



region systems. Our objective at this point is to compare
solutions of the two-equation model with ‘‘numerical
experiments’’, so as to test the theory in the absence of
adjustable parameters. The case of stratified systems has
been treated in the original paper [1]. For that particular
geometry, the large-scale effective properties can be devel-
oped analytically. A reasonable agreement was found
between large-scale predictions and numerical experiments.
In addition, it was found that the asymptotic behavior of
the stratified system, which has been described exactly by
Marle et al. [73], was also recovered by the proposed the-
ory. The main objective of this paper is to test the theory
in the case of more general complex systems.

3. Comparison with numerical experiments

The case of nodules embedded in a continuous matrix
(Fig. 2) is presented in this section. Such media are typi-
cally double-permeability systems, and can be found in nat-
ural formations. Experimental analysis on geological cores
have shown sand-shale sequences, where the less permeable
zones is materialized by cylindrical inclusions. Permeability
ratios between 103 and 105 are commonly observed [74–76].
Several works have pointed out the relevance of this kind
of geometry in geologic structures [46–48,55], which can
lead to strongly asymmetric breakthrough curves.

Numerical experiments are carried out to represent as
well as possible a one-dimensional tracer experiment on a
laboratory column. The heterogeneous sample is composed
of twenty nodular unit cells (Fig. 3) aligned along the
x-axis. This row pattern is repeated infinitely in the y-direc-

tion (Fig. 2). The experiment consists in imposing a con-
stant macroscopic pressure gradient between x = 0 and
x = L, in order to have a steady-state single-phase flow
from the left to the right. Then a solute constituent is intro-
duced at the surface x = 0. The validation of the proposed
theory proceeds in two steps. First, reference solutions are
built based on local-scale numerical simulations. Then,
after calculation of the ‘‘effective properties’’ on the repre-
sentative unit cell, the large-scale theoretical predictions are
computed, and compared to the numerical experiments.

3.1. Regional velocities

Using the tracer assumption, which supposes that the
single-phase flow is not affected by the presence of a solute
constituent, the total mass and momentum balance equa-
tions can be solved separately from the tracer dispersion
equation. Incidentally, the flow field is considered as a
known field in the local-scale description of solute trans-
port (Eqs. (1)–(4)). The first step is to compute the velocity
field in the unit cell representative of the periodic nodular
system (Fig. 3). This can be done easily using a classical
finite volume formulation of the Darcy equation
[10,77,78], and this is not further presented here.

An averaging process over the unit cell gives the large-
scale regional velocities defined as

fhvigg
g ¼ 1

V g

Z
V g

hvig dV and

fhvixg
x ¼ 1

V x

Z
V x

hvix dV ð22Þ

Some details about regional velocities can be found in
Quintard and Whitaker [79]. Due to the geometrical sym-
metry of the system and the fact that the main flow is along
the x-axis, the y-components of these macroscopic veloci-
ties are zero. To simplify the nomenclature, we will use
the following notations:

vg ¼ ðfhvigg
gÞx ¼ kfhvigg

gk and

vx ¼ ðfhvixg
xÞx ¼ kfhvixg

xk ð23Þ

The ratio of these velocities is plotted in Fig. 4 as a function
of the permeability ratio for a nodular unit cell. The strat-
ified case is also given for comparison. We observe that for
any permeability ratio larger than 10 (kg/kx P 10) and
whatever the nodule size, the velocity ratio can be directly
estimated from the permeability ratio by

vg

vx
� 0:5

kg

kx
ð24Þ

These large-scale velocities, associated with the convective
transport in each region, can give valuable indications for
the choice of the model, i.e., ‘‘mobile–mobile’’ vs ‘‘mo-
bile–immobile’’ description. We can fairly consider the
low permeability region as ‘‘immobile’’ when the velocity
ratio is greater than 100. Consequently, in a nodular struc-
ture, ‘‘mobile–immobile’’ descriptions are adequate when

0 L

0

l

y

x

Fig. 2. Periodic nodular system.

y

x

l

dh-region

w -region

Fig. 3. Two-dimensional nodular unit cell.



the permeability ratio is larger than 200. Non-ideal behav-
iors are also observed when the contrast of permeability
takes a lower value. In these situations, classical ‘‘mo-
bile–immobile’’ approaches have often proven to be quite
inadequate since convective transport in the low permeabil-
ity region cannot be neglected. To explore these different
situations, three cases are investigated, with permeability
ratios kg/kx varying from 10 to 1000.

3.2. Local-scale simulations

The objective of this part is to build some reference solu-
tions based on a fine description of the transport processes
through heterogeneities. First, a steady-state single-phase
flow from the left to the right is established in the nodular
structure (Fig. 2). Then, the surface x = 0 is subjected to a
sudden change in the local-scale concentration. We choose
the following initial and boundary conditions:

t ¼ 0; 8x : hcib ¼ 0 ð25Þ
x ¼ 0; 8t : hcib ¼ 1 ð26Þ
x ¼ L; 8t : convective flux; n � ðD�g � rhci

bÞ ¼ 0 ð27Þ

The Darcy-scale hydrodynamic dispersion tensor is defined
according to Bear [64] by the following expression:

D�ij ¼ ðaTkvk þ DeffÞdij þ ðaL � aTÞ
vivj

jvj ð28Þ

where aL and aT are the longitudinal and transverse local-
scale dispersivities, vi is a component of the local-scale
velocity v and Deff is the local-scale effective diffusivity.
While this is not a limitation of the theory, the medium
is considered isotropic for simplicity.

The local properties considered are summarized in
Table 1. As discussed in Section 3.1, three cases are inves-
tigated, with permeability ratios (kg/kx) varying from 10 to
1000. The dispersive and diffusive characteristics (aL, aT

and Deff) are chosen identical in both regions. This choice
seems to be very restrictive. There is no physical reason to
encounter this situation, but, at the large-scale, numerical
analysis has shown that the results are not very sensitive
to the contrast of dispersive characteristics. Indeed,
through Eq. (28), the contrast of dispersive processes
between the two regions will be mainly the consequence
of the velocity difference, resulting from the permeability
contrast. It must be emphasized at this point that this
choice of the same dispersivities for both regions is not a
limitation of either the theory or the implemented numer-
ical tools.

The macroscopic pressure gradient is chosen to have the
norm of the superficial average velocity equal to

v ¼ kfhvigk ¼ ugvg þ uxvx ¼ 10�5 m s�1 ð29Þ

Therefore, the cell Peclet number, as defined in Cherblanc
et al. [2], is

Pe ¼ vl

Deff
¼ 1000 ð30Þ

Local-scale transport is computed by using the numerical
code MT3D [80]. The method of characteristics, free of
numerical dispersion, is used for solving the convective
transport. An explicit finite-difference scheme is used for
the dispersion term. Local-scale simulations are performed
using 2000 · 50 grid blocks, corresponding to one half-row
of nodules (Fig. 2). To give a better illustration of the local
transport phenomena, the concentration fields are pre-
sented on a forty-nodule system by duplicating the simu-
lated row (2000 · 200 mesh).

For a permeability ratio equal to 100, examples of the
local-scale concentration fields obtained from numerical
experiments are presented in Fig. 5 at different times. The
tracer displacement can be followed from the left to the
right. In the matrix (the more permeable zone), convective
transport is predominant and responsible for early break-
through, while slow diffusion occurs in the nodules. The
fluctuations of the velocity field inside the more permeable
region lead to large-scale dispersion effects and tend to
increase the tracer spreading. It must be noticed however
that ‘‘immobile’’ zones should not be simply defined by
the value of the permeability ratio. Indeed, the regions
located between two nodules, where low velocities are
observed, behave here as retardation zones. Should the

Table 1
Local-scale properties of the nodular structure

Unit Cell l (m) d (m) ug L (m)

0.1 0.06 0.717 2

Physical properties eg ex Deff (m s�2) aL (m) aT (m)

0.4 0.25 10�9 0.002 0.0002
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Fig. 4. Velocity ratio as a function of the permeability ratio for stratified
and nodular structures.



stagnant region in the high-permeability zone be included
in the ‘‘immobile’’ zone? So far, we did not explore this
idea. The data seems to indicate in our case that the dom-
inant process that leads to non-equilibrium is the mass
exchange between the nodules and the continuous region.

To focus on the mass transfer between the nodules and
the matrix, some detailed views of the isoconcentrations in
the 10th nodules at t = 4 · 104 s are plotted in Fig. 6. Three
cases are proposed corresponding to different permeability
ratios. For low permeability ratio (kg/kx = 10), the isocon-
centrations clearly reflect the predominance of convective
transport crossing over the nodules. We observe some
small transversal dispersive effects. On the opposite, with
a high permeability ratio (kg/kx = 1000), diffusive process
is the only significant transport mechanism that takes place
within the nodules. In this configuration, mass exchange is
fairly approximated by a mixed model based on purely dif-
fusive transport in the inclusions [30–33,81]. Intermediate
permeability ratio (kg/kx = 100) represent a tricky situa-
tion since mass exchange involves both transport mecha-
nisms (convection and dispersion), and neither of them
can be neglected. Zinn et al. [56] developed a useful empir-

ical categorization of possible transport regimes for such
nodular systems, based on cell Peclet and Damköhler num-
bers. It confirms that diffusive mass exchange is observed
for high permeability ratios, while advective mass transfer
is predominant for lower permeability ratios. One interest-
ing feature of the development based on the volume averag-

ing technique discussed in this paper is that the closure
problem giving the mass exchange coefficient, as well as
other effective parameters in the averaged equations,
include convective and dispersive transport. In the next sec-
tion, the calculation of this mass exchange coefficient a* is
presented.

With these computed two-dimensional concentration
fields (Fig. 5), large-scale concentrations are built in terms
of local volume averages over the unit cell presented in
Fig. 3. This leads to the following explicit expressions of
the large-scale quantities:

fhcibgg
g ¼ 1

V g

Z
V g

hcib dV ; fhcibxg
x ¼ 1

V x

Z
V x

hcib dV ð31Þ

Here, Vg and Vx represent the volumes of the g- and x-
region, respectively, contained in the unit cell. Using this

Fig. 5. Concentration fields in the nodular system at different times.
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spatial convolution, the macroscopic transport problem is
one-dimensional along the main flow direction (the x-direc-
tion in our case). These reference solutions will be called
‘‘numerical experiments’’ in Section 3.5.

3.3. Calculation of large-scale properties

Macroscopic concentration fields are also obtained
using the two-equation model (Eqs. (8) and (9)) presented
in this work. The first step is to solve the three closure
problems (Eqs. (19a)–(21f)) so as to compute the large-
scale ‘‘effective properties’’ associated with the nodular unit
cell (Fig. 3). Numerical tools have been developed with the
ability to deal with a unit cell as complex as necessary. This
phase has been extensively described elsewhere [2], and
some results are recalled here.

Regarding the case under investigation, all the large-
scale effective properties that appear in the two-equation
model (Eqs. (8) and (9)) are computed directly from
local-scale characteristics. The most important upscaled
properties associated with the nodular unit cell described
by Fig. 3 and Table 1 are given in Figs. 7 and 8. The
large-scale longitudinal dispersion coefficient in the g-
region (Fig. 7) and the mass exchange coefficient (Fig. 8)
are plotted as functions of the cell Péclet number (Eq.
(30)). These coefficients are given for different permeability
ratios. Usual behavior is observed for both properties with
a diffusive regime at low Peclet number that does not
depend on the hydraulic characteristics. For high Peclet
number, a linear asymptotic dependence is found (/Pe).

One must keep in mind that both local-scale transport
mechanisms, i.e., convection and dispersion, are taken into
account in the theory. It must be emphasized that, so far,
theories proposed in the literature have been much more
restrictive [22,30,32–35,38–40,53,57,82]. These models can-
not be used with complex geometries as they do not take

into account the spatial variations of the local-scale pro-
cesses (diffusion, dispersion, . . .). For instance, explicit
expressions of the mass exchange coefficient for the nodu-
lar configuration are based on a purely diffusive transport
in the nodules [30–33,43], and are given by

a� ¼ 32
uxDeff

d2
ð32Þ

This is a simple estimate fairly justified for highly con-
trasted systems ( kg/kx = 1000 in Fig. 6) or low Peclet num-
bers (Fig. 8). In all the others situations, convective effects
clearly play a dominant role. This is explicitly presented in
Fig. 8 through the influence of the Peclet number and the
permeability ratio, as the mass exchange coefficient a* de-
pends more on flow characteristics than on diffusive prop-
erties. Details about the comparison between the different
proposed estimates of the effective properties and those ob-
tained from the volume averaging technique are presented in
Cherblanc et al. [2]. This explicit link between scales is one
of the major interest of the proposed methodology which
allows quantitative understanding of complex, coupled ef-
fects, especially in the case of ‘‘mobile–mobile’’ systems.

3.4. Numerical simulation of the two-equation model

Once the computation of macroscopic properties is com-
pleted, numerical solutions of the large-scale one-dimen-
sional problem are found by using the following
procedure. First, the transport operator is split into two
equations as shown here for the g-region equation

egug

o

ot
fhcibgg

g þ ½ugvg � ugg � dg�
o

ox
fhcibgg

g

þ ½dg � ugx�
o

ox
fhcibxg

x ¼ 0 ð33ÞFig. 7. Large-scale longitudinal dispersion coefficient in the g-region as a
function of the cell Péclet number for different permeability ratios.

Fig. 8. Large-scale mass transfer coefficient as a function of the cell Péclet
number for different permeability ratios.



egug

o

ot
fhcibgg

g ¼ D��gg

o2

ox2
fhcibgg

g þ D��gx

o2

ox2
fhcibxg

x

� a�ðfhcibgg
g � fhcibxg

xÞ ð34Þ
As noted previously, the upscaled system is 1D and homoge-
neous (large-scale properties are constant all over the
domain). Thus, only the x-direction components of the
two-equation model (Eqs. (8) and (9)) are considered for sim-
ulation. Thereby, the quantities vg,ugg,dg, . . . correspond to
the first component of {hvig}g,ugg,dg. The two different
transport mechanisms (identified as macroscopic convec-
tion, macroscopic diffusion) are separated in order to solve
them sequentially. One advantage of this splitting procedure
is to handle each equation with an appropriate numerical
scheme and a suitable time discretization. The two convec-
tion equations like Eq. (33) for the g-region and its equiva-
lent for the x-region, are coupled. The system can be
written as

o

ot
Cþ V

o

ox
C ¼ 0 ð35Þ

C ¼
fhcibgg

g

fhcibxg
x

" #
ð36Þ

V ¼
ugvg�ugg�dg

egug

dg�ugx

egug

dx�uxg

exux

uxvx�uxx�dx

exux

24 35 ð37Þ

This system can be decoupled by using a diagonalization
decomposition of the matrix V

V ¼ RKR�1 ð38Þ
This leads to two classical independent convection equa-
tions, each associated with a characteristic propagation
velocity (K) and a characteristic concentration (R�1C). In
general, the characteristic propagation velocities are differ-
ent from the large-scale flow velocities

o

ot
ðR�1CÞ þ K

o

ox
ðR�1CÞ ¼ 0 ð39Þ

The resulting convection equations are solved using an expli-
cit second-order TVD scheme [83,84]. The diffusion equa-
tions like Eq. (34), are solved using a h-scheme. The value
of h is 1

2
, which is the value for the Crank–Nicholson method,

leading to an unconditionally stable scheme. A CFL condi-
tion is required for the resolution of the convection equa-
tions. However, the time step can be different while solving
diffusion equations. This overall procedure leads to a sec-
ond-order scheme with negligible numerical dispersion.

We choose the following initial and boundary condi-
tions, which are similar to those imposed at the local-scale
(Eqs. (25)–(27))

t ¼ 0; 8x : fhcibgg
g ¼ fhcibxg

x ¼ 0 ð40Þ
x ¼ 0; 8t : fhcibgg

g ¼ fhcibxg
x ¼ 1 ð41Þ

x ¼ L; 8t : convective flux;
o

ox
fhcibgg

g ¼ o

ox
fhcibxg

x ¼ 0

ð42Þ

With a low computational cost, large-scale one-dimen-
sional concentration fields are now available, providing
theoretical predictions to be compared to the numerical
experiments presented in Section 3.2.

3.5. Comparison

In the case of a permeability ratio equal to 100 (kg/kx =
100), the large-scale concentration fields obtained for
t = 4 · 104 s and t = 6 · 104 s are plotted in Figs. 9 and
10. The results presented in the next section show that
the large-scale mass non-equilibrium is nearly maximum
for these times, which means that it is the best situation
for testing the two-equation model. One can observe that
the theoretical predictions based on Eqs. (8) and (9) are

Fig. 9. Comparison between experimental results and theoretical predic-
tions (t = 4 · 104 s).

Fig. 10. Comparison between experimental results and theoretical pre-
dictions (t = 6 · 104 s).



smooth profiles whereas the ‘‘experimental’’ values are sub-
ject to fluctuations having a length-scale comparable to the
length of a unit cell. This behavior, that results from the
volume averaging procedure, has been observed in many
situations [85,86], and is discussed by Quintard and Whi-
taker [87]. Weighting functions can be included in the vol-
ume averaging procedure to smooth these results. Despite
these fluctuations, the macroscopic experimental behavior
can be easily interpreted.

A very good agreement between the numerical experi-
ments and the one-dimensional theoretical predictions is
obtained. For systems with a well-connected more perme-
able region, the existence of preferential flow paths leads
to important non-ideal effects. The difference between the
transport characteristic times (rapid dominant convection
in the matrix – slow diffusion in the nodules) clearly calls
for a large-scale non-equilibrium description. In this kind
of heterogeneous structures, it is clear that both large-scale
transport mechanisms must be taken into account in each
region. In general, the assumptions made in ‘‘mobile–
immobile’’ models [30,32,35,59,88] may be too drastic.

To be clear about the need of a two-equation model, we
also represent the one-equation behavior. The large-scale
concentration is calculated using a porosity-weighted aver-
age of the concentration in each region [89]

C� ¼
egugfhci

b
gg

g þ exuxfhci
b
xg

x

egug þ exux

ð43Þ

The associated curves are plotted in Figs. 9 and 10. The
profile is characteristic of a non-Fickian behavior, and can-
not be the solution of a classical advection-dispersion equa-
tion. With large-scale mass non-equilibrium effects, a
complex one-equation model should be used, such as the
formulations proposed in non-local theories [90,91]. A
two-domain description allows to increase the degrees of
freedom of the model, and can describe most of the
large-scale non-equilibrium behavior without adjustable
parameters and without a dramatic additional mathemati-
cal complexity.

Comparing the outlet concentration curves can also
bring some attractive information (Fig. 11). Several defini-
tions of this outlet concentration can be used (surface-,
porosity- or velocity-weighted averages, . . .). In this work,
elution curves based on a velocity-weighted average are cal-
culated, as it corresponds to the concentration measured at
the outlet of a laboratory tracer experiment. From fine-grid
simulations (Fig. 5), the experimental elution concentration
is computed by

Cexp ¼
R

Ae
nAe � hvihci

b dAR
Ae

nAe � hvidA
ð44Þ

where Ae is the surface perpendicular to the flow at x = L

and nAe is the corresponding unit normal vector. For such
calculations, local-scale simulations are performed using 30
unit cells to avoid the perturbation induced by the diffusive
flux boundary condition imposed on the right side of the

system (Eq. (27)). At the large scale, a similar definition
is chosen for the theoretical elution concentration

Cth ¼
ugvgfhcibgg

g þ uxvxfhcibxg
x

ugvg þ uxvx
ð45Þ

where vg and vx correspond to the x-component of {hvig}g

and {hvix}x. One can note that these local- and large-scale
definitions are not mathematically equivalent. Indeed, the
theoretical definition (Eq. (45)) using large-scale concentra-
tions involves a spatial average process along the x-direc-
tion, whereas the experimental expression (Eq. (44)) is
localized at the outlet surface (x = L). The discrepancies
between them have been estimated to be about a few per-
cent [92]. This point can partly explain the small differences
between local- and large-scale elutions curves, as plotted in
Fig. 11. Moreover, the volume averaging technique usually
under-estimates the mass transfer coefficient a*, at short
times [1,41]. This can be noticed in Figs. 9 and 10 where
the experimental non-equilibrium between g- and x-re-
gions is slightly smaller than the theoretical one. A similar
observation is done in Fig. 11 where wee see that, at early
time (t � 5 · 104 s), the theoretical breakthrough occurs be-
fore the experimental one. Consequently, the theoretical
plume spreading is a little larger. Additional discussions
and comparisons based on elution curves, between the
two-equation model and experimental simulations are pro-
posed by Golfier et al. [92].

Changing the permeability ratio leads to different mac-
roscopic behaviors, as illustrated in Figs. 12 and 13. For
lower permeability contrast (kg/kx = 10 in Fig. 12), the
large-scale behavior approaches an equilibrium situation,
since the mass exchange is enhanced by a high inter-region
convective flux (see Fig. 8). Although, large-scale non-equi-
librium effects are less important in this case, macroscopic
convective transport must be taken into account in both
regions, justifying a ‘‘mobile–mobile’’ description. Never-
theless, the elution curve could be accurately represented
by a one-equation non-equilibrium description [89]. With

Fig. 11. Comparison between experimental and theoretical elution con-
centration curves.



a high permeability contrast (kg/kx = 1000 in Fig. 13), the
ratio of regional average velocities is around 500 (Fig. 4).
Convective transport in the nodules could be neglected,
as diffusive processes are predominant. For that class of
two-regions systems, non-equilibrium effects are increased,
but should be fairly predicted by a ‘‘mobile–immobile’’ rep-
resentation. In the framework of a first-order kinetic theory
to describe the mass exchange between the two regions, the
effective mass transfer coefficient, a*, given by the volume

averaging method is equal to the harmonic average of the
eigenvalues associated with the closure problem [41–43].
Several works have shown that this is the ‘‘optimal’’ value
as it assures that the zeroth, first, and second temporal
moments of the breakthrough curve are maintained
[33,35,43,93]. However, using this ‘‘average’’ value, the

mass transfer is under-estimated at short times and over-
estimated at long times. In our case (kg/kx = 1000 in
Fig. 13), the ratio of the characteristic time for diffusion
in the inclusions to the characteristic time for convection
in the matrix across the system is about 10, which is not
so important, accounting for the good agreement we
obtained. If the contrast of transport characteristic times
increases, a two-equation description based on a first-order
mass exchange term may lead to discrepancies, as pre-
sented by Golfier et al. [92], and additional developments
are necessary to accurately describe these processes.
Finally, intermediate values of the permeability ratio, like
the first case presented in this section, lead to more com-
plex large-scale behaviors, as none of the local-scale trans-
port mechanisms, namely convection and dispersion, can
be neglected. The two-equation models extended to
‘‘mobile/mobile’’ systems offer a more general framework,
while being compatible with their ‘‘mobile/immobile’’
counterparts.

We have shown that some confidence can be put on the
proposed model, and in the next part, the two-equation
model will be used to focus on the non-equilibrium which
takes place in nodular systems.

4. Large-scale mass non-equilibrium condition

Large-scale mass non-equilibrium refers to situations in
which the term ðfhcibgg

g � fhcibxg
xÞ must be kept when

developing the large-scale model. This is the case of the
two-equation model proposed here. To study the influence
of this term, a non-equilibrium criterion is built by inte-
grating the concentration difference over the domain at a
given time

HðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ x¼1

x¼0

½CgðtÞ � CxðtÞ�2 dx

s
ð46Þ

with Cg ¼ fhcibgg
g
; Cx ¼ fhcibxg

x ð47Þ

The system under consideration is constituted by 106 nod-
ular unit cells. For the time range and mechanisms consid-
ered, this is large enough so that the boundary condition
on the right side of the system (Eq. (42)) has no influence
on the results. Indeed, this case can be considered as a
semi-infinite medium. In Section 3, the limitation to twenty
unit cells was essentially due to the high computational cost
of fine local-scale simulations used to build the reference
solutions. This limitation vanishes as the results presented
here come from the 1-D simulation of the macroscopic
two-equation model.

First, for each set of local-scale characteristics, large-
scale properties are computed based on numerical resolu-
tion of the closure problems and introduced in the two-
equation model. In the second step, the two large-scale
one-dimensional concentration fields obtained are inte-
grated over the entire domain to determine the non-equilib-
rium criterion at a given time (Eq. (46)).

Fig. 12. Comparison between theoretical predictions and experimental
results (t = 4 · 104 s).

Fig. 13. Comparison between theoretical predictions and experimental
results (t = 4 · 104 s).



Time-evolution of the non-equilibrium criterion H, for
different permeability ratios and for different dispersivities
are presented in Figs. 14 and 15 respectively. Permeability
ratios, between 2 and 1000, have been taken greater that 1
because non-equilibrium effects appear mostly in this case.
This point has been documented in the heat transfer case
(Fig. 32 in [94]) and observed for transport problems [2].
Other local-scale parameters are taken equal to

Pe ¼ 1000;
aL

aT

¼ 10;
d
l
¼ 0:6; eg ¼ 0:4;

ex ¼ 0:25 ð48Þ

while aL/l = 0.1 in Fig. 14, and kg/kx = 100 in Fig. 15. In
each cases, the Damköhler number is given for indication

Da ¼ a�l
fhvigg

g ð49Þ

One can see in Fig. 14 that non-equilibrium effects increase
with the permeability ratio. When computing the flow field,
a large contrast of permeability increases the difference of
average velocities in each region. If mass exchange is not
important enough to homogenize the concentration be-
tween the two regions, a higher contrast of convective
transport velocities leads actually to greater non-equilib-
rium effects. On the contrary, when the contrast of perme-
ability is close to 1, the medium can be considered
homogeneous and local equilibrium is observed as ex-
pected. The results presented in Fig. 15 show that non-
equilibrium decreases with high local-scale dispersivities.
In this case, local-scale dispersion mechanism increases
the mass exchange between the two zones and tends to
homogenize the concentration. For very low dispersivities
(aL/l = 0.01), the transport problem is close to the purely
convective case and non-equilibrium effects are maximum.
Similar conclusions have been put forth by Cherblanc et al.

[2], and several works have pointed out the importance of
the local-scale dispersion phenomena that can reduce dras-
tically the macro-dispersion [95–97]. For large Peclet num-
bers, the lower the local-scale dispersion, the greater the
non-equilibrium effects and the large-scale dispersion.

For short times, the constraints imposed by the initial
boundary condition (Eq. (40)) lead to

Hðt ¼ 0Þ ¼ 0 ð50Þ
For very long times, non-equilibrium approaches zero

lim
t!1

HðtÞ ¼ 0 ð51Þ

Whatever the geometry, large-scale mass equilibrium is al-
ways satisfied asymptotically, for this initial boundary va-
lue problem. This observation reflects the result that the
two-equation model converges asymptotically to a one-
equation model [1,89,98]. One must keep in mind that this
observation may depend on our definition of the non-equi-
librium criterion (Eq. (46)). Consequently, a two-equation
model is devoid of interest in the asymptotic zone and
the macroscopic behavior can be perfectly represented with
a one-equation model, as discussed in Quintard et al. [89].
However, the choice of the one-equation model and partic-
ularly the method to calculate the large-scale dispersion
tensor is the major problem. The equilibrium behavior in
the asymptotic zone would prompt us to use an equilibrium
model. This kind of conclusion is not correct. As defined by
Quintard et al. [89], an equilibrium process arises when the
exchange coefficient a* is great enough, so that at any time,
the two regional averaged concentrations are equal, i.e.,
fhcibgg

g ¼ fhcibxg
x. It has been shown in Quintard et al.

[89] that the dispersion tensor in the case of a local equilib-
rium model (according to the above definition) is given by

D��eq ¼ D��xx þ D��xg þ D��gx þ D��gg ð52Þ
Fig. 14. Evolution of the non-equilibrium criterion as a function of time
in a nodular system for different permeability ratios. The Damköhler is
given between brackets for indication.

Fig. 15. Evolution of the non-equilibrium criterion as a function of time
in a nodular system for different local-scale dispersivities. The Damköhler
is given between brackets for indication.



It has also been shown that the concentration field ob-
tained with this coefficient does not fit the one obtained
from the complete solution of the problem.

The whole transport history must be taken into account
when concluding on the validity of the equilibrium assump-
tion. An equilibrium state observed at a given time is not
sufficient to characterize an equilibrium process. The
non-equilibrium effects, which take place in the pre-asymp-
totic zone, will considerably increase the global tracer
spreading. Within the framework of a one-equation
description, the macroscopic longitudinal dispersion coeffi-
cient given by a non-equilibrium model is generally greater
than the one obtained with an equilibrium representation
[2,73,89,99]. Indeed, in this case, the asymptotic dispersion
coefficient is given by

D��1 ¼ D��gg þ D��xx þ D��gx þ D��xg

þ 1

a�
exuxvg � egugvx

feg þ uxx � ugg

� �
�

exuxvg � egugvx

feg þ dx � dg

� �
ð53Þ

and one sees that it depends on the mass exchange coeffi-
cient and on the regional velocities. Therefore, non-equilib-
rium effects must be taken into account when calculating
macroscopic dispersion coefficients, especially if an appar-
ent dispersion behavior has been reached asymptotically.

The theoretical model and numerical procedures pro-
posed in this work can be considered as tools for the anal-
ysis and choice of the model to be used for an accurate
description of the macroscopic transport. Indeed, several
models are embedded into a single formulation: two-equa-
tion model, one-equation non-equilibrium model, equilib-
rium model. In addition, the proposed generalized two-
equation model accounts for ‘‘mobile–immobile’’ as well
as ‘‘mobile–mobile’’ systems.

5. Conclusion

This paper deals with large-scale solute transport in
highly heterogeneous systems, where abnormal dispersion
is usually observed. This behavior is commonly named
‘‘anomalous’’ or ‘‘non-ideal’’ referring to the fact that it
cannot be represented by the classical advection-disper-
sion equation valid for homogeneous systems. A typical
class of heterogeneous media leading to this macroscopic
abnormal behavior is related to double-permeability
media. To give prominence to these phenomena, a nodu-
lar geometry has been chosen as most of the local-scale
processes responsible of anomalous dispersion are repre-
sented in such systems, i.e., preferential flow paths, retar-
dation zone, limited mass exchange between zones. So as
to have some reference solutions, local-scale numerical
simulations based on a detailed description of the hetero-
geneities have been performed. Using a spatial averaging
process over a nodular unit cell, large-scale one-dimen-
sional concentration fields have been built, called ‘‘exper-

imental’’. These simulations have shown that both local-
scale transport phenomena, convection and dispersion,
may play a significant role and should be taken into
account when developing a macroscopic theory.

A two-equation model has been developed using the
large-scale volume averaging method as proposed in
Ahmadi et al. [1]. The main advantage of the theory is that
the local problems that are used to calculate the large-scale
properties are given explicitly in terms of the local proper-
ties, with little simplifications. They incorporate the effects
of advection and dispersion in both regions. While limita-
tions of the theory must be kept in mind, this example
has shown that even high non-fickian behaviors can be cap-
tured for many systems having the structure of double-
media.

The numerical tools associated with this theory are
briefly presented, and theoretical predictions have been
compared favorably to numerical experiments for the nod-
ular case. This comparison clearly shows that two-domain
approaches are essential to catch complex large-scale dis-
persion phenomena, since the mass non-equilibrium cannot
be accurately represented by a one-equation description. In
some classes of heterogeneous structures, like the nodular
case presented here, discrepancies would have been
observed with ‘‘mobile–immobile’’ models at moderate per-
meability ratios, suggesting that convection and dispersion
must be taken into account when upscaling. This confirms
some conclusions put forth in Cherblanc et al. [2] arguing
that local dispersion process cannot be neglected when cal-
culating the mass exchange between zones. These encour-
aging results would suggest to extend this approach to
random media. Double-permeability system could be seen
as simplified but accurate models of general heterogeneous
media generated from statistical characteristics. The ability
of the closure problems to link the local-scale to the large-
scale, could be used in relation with a geostatistical descrip-
tion of heterogeneities.

Finally, the two-equation model has been used in a
numerical analysis of the non-equilibrium that takes place
in a semi-infinite nodular system. This mass non-equilib-
rium shows a maximum for intermediate times before
going to zero for long times. In the asymptotic region,
the two-equation model converges to a one-equation
model, which does not correspond to the so-called local
equilibrium model. As presented in Quintard et al. [89],
an asymptotic one-equation model must incorporate the
tracer history through the non-equilibrium that takes place
before the asymptotic regime. The proposed model can be
useful to discuss the validity of the large-scale mass equilib-
rium assumption, and predict when non-ideal effects
appear.
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