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Abstract - This paper addresses the problem of robust 
detection of signal singularity in hostile environments 
using multisensor data fusion. Measurement 
uncertainty is usually treated in a probabilistic way, 
assuming lack of knowledge is totally due to random 
effects. However, this approach fails when other effects, 
such as sensor failure, are involved. In order to improve 
the robustness of singularity detection, an evidence 
theory based approach is proposed for both modeling 
(data alignment) and merging (data fusion) information 
coming from multiple redundant sensors. Whereas the 
fusion step is done classically, the proposed method for 
data alignment has been designed to improve singularity 
detection performances in multisensor cases. Several 
case studies have been designed to suit real life 
situations. Results provided by both probabilistic and 
evidential approaches are compared. Evidential methods 
show better behavior facing sensors dysfunction and the 
proposed method takes fully advantage of component 
redundancy. 
 
Keywords: Singularity Detection, Multisensor Data 
Fusion, Evidence Theory, Belief Functions. 
 

1 Introduction 
Singularity detection in signals is of major importance 

in many fields of application. This is especially true in 
monitoring applications. Such applications can take place 
in environments that are hostile to data acquisition and 
processing by downgrading the quality of signals coming 
from sensors, making measurements uncertain. This 
uncertainty has to be taken into account when processing 
the signal data in order to make coherent decisions about 
the singularity detection.  

 Considering measurements, uncertainty is defined as a 
parameter associated with the result of a measurement that 
characterizes the dispersion of the values that could 
reasonably be attributed to the measurand [1]. This 
parameter is defined as the standard deviation of a 
probability density function which describes this 
dispersion. This definition of the uncertainty associated 
with a measurement assumes that the result of the 
measurement has been corrected for all recognized 
significant systematic effects [1]. In other words, only 

random effects are taken into account. Modeling random 
effects is straightforward in probability theory, hence this 
theory is used to describe and manipulate measurements 
affected by random effects, also called noise. However, it 
has been pointed out that in the measurement practice, the 
“random effect only” assumption might not be acceptable: 
significant systematic effects cannot always be corrected 
[2], and there are even situations where it would be wrong 
to make corrections, for instance when sensor failure 
occurs. Some sensible applications like high value-added 
manufacturing processes or power plant monitoring, for 
example, need robust and automatic singularity detection 
systems that are able to reach good performance levels 
even in critical cases which involve sensor dysfunction or 
lack of detection ability. 

The need for robustness against sensor failures in 
singularity detection leads to two solutions: increasing the 
number of sensors, and working in another framework 
than the classical probabilistic one, which shows better 
behavior facing unexpected sensor behavior. Multisensor 
data fusion, which seeks to combine data from multiple 
sensors to perform inferences that may not be possible 
from a single sensor alone [3], seems to be the ideal 
solution facing this type of situation. Indeed, one potential 
advantage of using data fusion is related to the capacity 
for a system to work in a degenerated mode [5]. However, 
any process of fusion requires a conversion of the sensor 
raw or processed data into a common coordinate frame 
before being merged. This step is called data alignment 
and is considered a difficult problem for which a general 
theory does not exist [4]. 

The present work aims to provide a method for 
modeling uncertain sensor measurements which has been 
designed to improve the performance of singularity 
detection in cases when two or more redundant sensors 
are used. A comparative study allows to compare the 
method with existing ones. The proposed method is 
designed in the evidence theory framework and uses belief 
functions to model sensor measurements instead of 
probability density functions, which are used in the 
probabilistic framework. 

A description of the problem of singularity detection in 
signals and some concepts about evidence theory is first 
presented. Then the probabilistic approach, an existing 
evidential method, and the proposed method for data 
alignment and fusion are detailed. Finally, as numerical 
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experiments have been conducted considering several 
cases, results are presented and discussed to provide an 
overview of the performance levels of the different 
approaches, and improvements are suggested. 

1.1 Monitoring singularities in signals in 
hostile environments 

This paper is limited to monitoring applications using 
sensor data, but may be extended to other applications. 
Monitoring a system via sensors means looking for one or 
more features of interest in the acquired signals. Such a 
feature of interest has to be singular in a way, in order to 
be differentiated from the rest of the signal and detected. 
Without loss of generality, we assume the singularity is 
represented as a maximum in a signal. Indeed, a number 
of tools, like filters or statistical operations, may be used 
to process the signals to reveal the feature of interest. The 
problem addressed here is to determine the location of a 
singularity (that is supposed to exist) in a signal after the 
eventual conversion step mentioned above has been done. 
The singularity is to be localized on the signal abscissa, 
which is usually the time axis, but not always.  

Sensor-based monitoring can be problematic, especially 
in hostile environments where measurements are tainted 
with uncertainty. It is assumed that the sensors do not 
have self-diagnostic features and that all significant 
systematic effects have been catered for. The 
measurement uncertainty can hence take two forms: 
stochastic uncertainty, due to external perturbations, and 
epistemic uncertainty, or lack of knowledge, due to sensor 
failure or lack of detection ability. When no a priori 
information is available about the monitored system, 
redundancy appears as the natural solution to avoid issues 
due to sensor failure, but could also increase accuracy of 
results by reducing the stochastic uncertainty. Voting 
techniques work quite well to detect sensor failure and 
eliminate faulty instruments in systems that possess a high 
degree of sensor redundancy [6]. However, they often lead 
to erroneous statements as the number of faulty sensors 
becomes large, or when random effects are so important 
that every sensor’s output differs markedly from others. 
Thus, in situations where sensor failures are likely to 
occur, and a high level of external perturbations are 
expected, a method taking into account both stochastic 
and epistemic uncertainty is needed to perform singularity 
detection.  

1.2 Concepts on evidence theory 
Evidence theory has been shown to be a practical 

framework to model both stochastic and epistemic 
uncertainty. In this paper, belief functions as defined in 
the transferable belief model [9] are used to model sensor 
measurements. Some concepts are presented following 
[7,8,9] to remind the reader about some main terms and 
formulas that are used in the main part of the paper. A 
frame of discernment Ω is a finite set of mutually 
exclusive propositions. In our case, the propositions are 
the possible localization of the maximum in the signal and 
are called candidates. 2Ω is the set containing all subsets 
of Ω and is called the power set. Considering a single 

information source j, the basic belief assignment function 
mj

 is used to allocate parts of an initial unitary amount of 
belief among the proposition of 2Ω. Thus, considering a 
proposition A, mj(A) is a part of the jth source’s belief that 
supports A and is called a basic belief mass. Every A such 
that mj(A) > 0 is called a focal proposition. Let mj : 2Ω → 
[0,1] with 
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The difference with probability model is that masses can 
be given to any proposition of 2Ω instead of only 
singletons of 2Ω. From the basic beliefs assignment, other 
functions are defined that give meaningful quantities. The 
belief function Belj gives the quantity Belj(A) which can 
be viewed as a measure of the jth source’s belief in the 
proposition A. 
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The plausibility Plj(A) can be interpreted as a measure of 
the amount of belief that could be potentially accorded to 
A and is given by the plausibility function. 
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The pignistic probability function BetP allows 
constructing a probability distribution on 2Ω from the 
sources beliefs, which is useful when decisions on 
singletons of Ω have to be made. 
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where ‹B› denotes the cardinality of set B. The 
commonality measure Qj(A) can be interpreted as the 
belief that is free to move to A. According to (5), (2) and 
(3) one can observe that the commonality of a proposition 
will increase as its belief and plausibility will decrease. 
Thus the commonality function is commonly used to build 
an ordering concerning the specificity of different belief 
functions [12]. 
 
 ∑

⊇

=
AB

BmAQ jj )()(  (5) 

All these representations are equivalent in the sense that 
one can be derived from any other. 

Evidence theory also allow to aggregate information 
coming from multiple sources by providing combination 
rules. Dempster’s rule of combination is the first one 
defined within the framework of evidence theory and 
plays a central role. This rule should be applied under the 
following conditions: propositions of the frame of 
discernment have to be mutually exclusive, exhaustive 
(closed world assumption), and the information sources 
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have to be independent. In the singularity detection 
problem the first two issues are addressed by considering 
the maximum of the original signal Y is unique. The third 
one requires the sensors measurements to be independent, 
which depends on the application design. Let m+ denote 
the belief function resulting from the aggregation of 
information provided by J sensors. 
 

 Ω∩
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= 2,

)0(1
)()( A

m
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where m∩ denotes the conjunctive rule of combination 
defined as  
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and where m(Ø) is the mass assigned to the empty set and 
given by 
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m(Ø) can be interpreted as a measure of conflict between 
the different information sources. 

2 Modeling and merging sensor 
measurements 

 A sensor measurement is described by a discrete signal 
Sj  obtained by adding the original signal Y and a random 
noise Bj defined by a probability density function pBj with 
support θBj. 
 
 [ ]NnnBnYnS jj ,,1,)()()( …∈+=  (9) 

where N is the signals length and j the sensor identifier. 
 In the following, uncertainty concerning the maximum 

of a signal is described as a function of two variables: di,k 
the distance between the ith and the kth value of the 
measured signal,  
 
 )()(,)()(, kSiSkSiSd ki ≥−=  (10) 

and the comparison between the signal and noise levels 
expressed in term of the spurious free dynamic range 
(SFDR) between the normalized signal standard deviation 
and the noise standard deviation. The signal points are 
supposed to follow a uniform distribution in [-1,1], and 
the noise is centered at 0. 
 

 ))(log)
3

1((log20 noiseSFDR σ−=  (11) 

The problem addressed in this paper is illustrated in 
figure 1. One wants to find the index n of the maximum of 
the unknown original signal Y given J sensor 
measurements Sj tainted with uncertainty. The uncertainty 
can be due to the presence of noise, represented in the 
figure by error bars corresponding to the θBj supports of 
uniform pBj distributions, but also to sensor failure as it is 
the case for the third sensor. 

 

 

Figure 1 – Illustration of the singularity detection problem 
presented in the paper. 

2.1 The probabilistic approach 
When no prior information is available, given a 

measurement Sj and the associated noise probability 
density function pBj, one can derive the probability Pj(i) of 
the ith point of the original signal to be the maximum 
according to the jth sensor. In the following, k is defined as  

 
[ ] ikNk ≠∈ ,,,1 …  
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where pj (Y) is the joint probability distribution function of 
the Y signal values which can be derived from Sj and pBj. 

Considering J independent sensors, the a posteriori 
aggregated probability P(i) of the ith point being the 
maximum is given following the independent opinion 
pool approach [10] by  
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Then, the decision concerning location of the singularity 
in Y is made choosing the maximum a posteriori 
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probability according to the maximum a posteriori 
decision rule.   

2.2 The evidential approaches 
Evidence theory provides sophisticated tools to model 

and manipulate degrees of belief, but one of the main 
difficulties lies in modeling the knowledge of the problem 
by initializing the belief functions mj  as well as possible 
[11]. On the other hand, the absence of a procedure to 
convert the information into basic belief masses allows 
one to adapt the data alignment step to his requirements. 
In the presented method, a strong probabilistic 
background is held according to the fact that random noise 
is one of the principal uncertainty vectors in hostile 
environments measurements, but advantage will also be 
taken of sensor redundancy. The underlying idea is to 
assign high masses to total ignorance when sensors seem 
to give uncertain information so that during the 
combination of sensors measurement, the most specific 
sensors measurements will be taken into account. 

In the following the j subscript denoting the sensor 
index is omitted for sake of readability as belief function 
construction concerns each sensor separately. 

2.2.1 Existing evidential approach 
Several approaches allow deriving belief functions from 

discrete probabilities obtained using a probabilistic 
approach like, for instance, the one described in section 
2.1. Classically, the least commitment principle is used 
when no meta-knowledge concerning the reliability of the 
information sources is available to build belief function 
from those probabilities. An inverse pignistic 
transformation is first used to generate the set of 
isopignistic belief functions Biso(BetP) that would lead to 
the original probability distribution through (4) [9]. Then 
a belief function is chosen in Biso(BetP) according to the 
least commitment principle: among a set belief functions, 
when there is no reason to prefer one to another, the least 
specific (or least informative) one is chosen. The 
specificity of a belief function can be evaluated using the 
commonality function (5). A belief function constructed 
this way is consonant. A consonant belief function is a 
belief function which focal elements are nested. More 
explanations and an algorithm to derive the least 
committed basic belief distribution can be found in [12]. 

In order to better feel how uncertainty is allocated, (10), 
(11), (13) and (14) can be used to derive discrete 
probabilities as a function of di,k and SFDR. Then, the 
above mentioned algorithm can be used to derive the 
corresponding belief functions. In order to obtain readable 
results, a case when only two points S(1) and S(2) are 
candidates to be the maximum is considered, so the 
ignorance is fully contained in m(Ω) = m({1,2}). A 
Gaussian noise is considered as it is a typical real life 
noise shape. Computing the amount of ignorance derived 
from P(1) and P(2) leads to Figure 2. 

 

Figure 2 - Mass allocated to the total ignorance in function 
of d1,2 and SFDR for two candidates according to the 

existing evidential approach. 
 

As expected, total ignorance is reached when d1,2 = 0, 
and the uncertainty level decreases as the SFDR1,2 and d1,2 
increases. It can be noted that the total ignorance state is 
achieved only for d1,2 = 0. This approach to build belief 
functions has been implemented and obtained results are 
compared to the probabilistic and the proposed evidential 
approaches results in section 3. 

2.2.2 The proposed evidential approach 
In the proposed approach, belief functions are not 

derived from the discrete probability distribution defined 
by (13). However, as an important aspect of the provided 
information, probability distributions p(Y(n)|S(n)), 
describing random effects on each point of S(n), which is 
straightforward to derive from (9) knowing pB, play an 
important role in the belief function construction. The 
supports θn of the p(Y(n)|S(n))’s are also of great 
importance, and are considered to present the same width 
for every n as real life situations will usually present the 
same noise perturbations for each point Sj(n) given by a 
sensor. As in the existing approach, the constructed belief 
function is consonant. The consonant belief function 
construction procedure is first presented for two 
candidates, and then be generalized to N. The two 
candidates are S(1) and S(2), with S(1) > S(2). This 
ordering gives the ordering of the consonant belief 
function, as it is the case in the least commitment 
principle method. The basic belief assignment are given 
following  
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As we integrate a density probability function over its 
whole support, (1) is respected. This mass allocation 
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procedure can be interpreted as “if there is a chance that 
Y(2) is the maximum, then we assume that we do not 
know which of Y(1) or Y(2) is the maximum. Else, Y(1) is 
the maximum, so the probability of Y(1) to be greater than 
the higher possible value of Y(2) is allocated to m(1) ”. We 
now consider N candidates ordered in a vector u such as 
S(u(n-1)) > S(u(n)) for every n in [2,…,N]. In the 
following, u(k) is denoted uk for sake of readability. We 
have for the general case 

 }{ dYuSuYpuum nu

nu

Sup

Supn ))()((),,( 1

)(

)( 11
1

∫
+

=
θ

θ
…  (17) 

The particular case m(u(1),…,u(N)) = m(Ω) is derived 
from (18).  
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In the case that the θn supports are not bounded, the 
method will lead to the creation of a vacuous belief 
function, which is a belief function such m(Ω) = 1. Having 
only this kind of belief functions cannot lead to a choice, 
which is a drawback in a decision making context. We 
then propose to limit unbounded probability density 
functions supports by defining new θn so that the 
probability Pconf of a random value drawn from 
p(Y(n)|S(n)) to lie in θn is high even if it does not exactly 
equals 1. Then, the eventual little amount of mass which 
has not been allocated is allocated to m(Ω). The 
confidence interval θn and the associated probability  Pconf  
are user-defined parameters of the method. For instance, 
illustrative example and numerical experiments presented 
below have been implemented using Gaussian probability 
density functions to represent noise, and the θn have been 
defined as [µn-5σn , µn+5σn] where µn and σn are the mean 
and the standard deviation of the Gaussian probability 
density function, respectively. In this case Pconf  is 
considered equal to 1. 

As the underlying idea is to confer more credit to most 
specific sensors (sensors presenting low SDFR levels and 
high du(1),u(2) levels) to take advantage of redundancy, least 
specific sensors should be much discarded during the 
combination step than they are using existing methods. 
Thus, the basic belief assignment should be less specific 
regarding the uncertainty level characterized by du(k),u(k+1) 
and SFDR. Figure 2 shows that in the same conditions of 
distance and noise than in figure 1, total ignorance state is 
not only achieved when du(1),u(2)=0, but also as SFDR 
decreases. The most specific sensors will thus be 
favorized during the combination step in two ways. First, 
it can be observed that uncertainty starts increasing sooner 
that in figure 1 according to the SFDR level. Second, the 
sharper behavior observed in figure 3 will lead to a 
quicker discarding of less specific sources during the 
combination step. 

 

Figure 3 - Mass allocated to the total ignorance as a 
function of d1,2 and SFDR for two candidates according to 

the proposed evidential approach.  

2.2.3 Decision making using the evidential 
approaches 

As the evidential framework offers several ways to 
represent knowledge about propositions (see section 1.2), 
several strategies that lead to decision on propositions of 
2Ω can be implemented. When decisions have to be made 
only on propositions of Ω, as it is the case in this study, 
three rules are generally considered to make a choice 
among them: the maximum belief, the maximum 
plausibility and the maximum pignistic probability rules. 
The three strategies were implemented and results are 
compared and discussed in section 3. 

2.3 Complexity considerations 
When compared with probability theory, evidence 

theory faces higher computational complexity due to the 
higher number of possible focal elements (2|Ω| instead of 
|Ω|, where |Ω| represents the cardinality of Ω) and the 
Dempster’s combination rule requirements. Several 
approximation algorithms have been suggested to 
overcome this difficulty. A review of such algorithms can 
be found in [13]. As the belief functions presented in this 
work are consonant, their number of focal elements does 
not exceed |Ω|. Unfortunately, consonance is not 
preserved by Dempster’s rule of combination and no 
significant computational performances improvement can 
be achieved due to this property [14].  

Focusing on the scope of this work, depending on the N-
dimensional probability density function given by (12) 
and the number N of candidates, the calculation of the 
discrete probability distribution on [1,…,N] using (14) can 
be difficult and/or time consuming, and is needed for both 
the probabilistic and the existing evidential approaches. 
Using the proposed approach allows to bypass the discrete 
probabilities calculation (13) and does not involve 
anything else than the calculation of only one-dimensional 
integrals of monovariate probability density functions 
given by (17) and (18). 
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3 Numerical experiments results 
In order to give an overview of the proposed approach 

ability to improve performance of the singularity detection 
in real-life situations, a series of tests was conducted to 
reproduce hostile environments measurements issues and 
evaluate the performances of the three different methods 
presented in section 2. 

Three sensor states have been considered. The normal 
operating state corresponds to a classical sensor behavior 
where a measurement is given with an associated noise 
level characterized by the SFDR value. In the weak failure 
state, a sensor only provides noise which can be quantified 
according to (11), whereas in the strong failure case, a 
wrong measurement is given and is perturbed by noise. 

3.1 Numerical experiments set-up 
The test series have been conducted considering 3 

sensors, each one providing a 3 points long measurement. 
The original signals Y have been drawn  from [-1,1] 
following a uniform distribution. For one original signal, 
2500 random noise realisations were generated for each 
sensor and for each considered SFDR level. The error 
detection rate concerning the localization of the maximum 
among the three points was then computed and expressed 
as a detection error percentage. The 95% confidence 
interval on the detection error rates lies between +/- 0% 
and +/- 2% depending on the detection error rate. A 
Gaussian noise distribution has been considered, and the 
θn supports have been defined as [S(n)-5σn , S(n)+5σn] to 
perform the (16) and (18) calculations. The general 
scheme followed to conduct the test series is drawn in 
figure 4. 

 

 
 

Figure 4 - General scheme followed to conduct test series. 
 

For the sake of readability of figures, results obtained 
by the same data alignment method but different decision 
rules that do not present significant differences are drawn 
together. 

3.2 Results and discussions 
Significant cases are first exposed to serve as a basis to 

draw more general conclusions concerning the different 
approaches performance level.  

The first case addressed concerns a normal operating 
state for the 3 sensors. It aims at evaluating performances 
of the evidential methods in a case where only random 

effects occur and thus the probabilistic approach is 
optimal. Figure 5 shows that the asymptotic behaviors are 
the same for all the approaches: no error is made for high 
SFDR levels, and when it is so low that the original signal 
Y influence is not significant in the measurements Sj 
anymore, the error rate reaches 66.6% as the chance to 
detect the maximum with no significant knowledge 
available is 1 out of 3. As expected, the lowest error rates 
are obtained by using the probabilistic approach as it is 
optimal in such a case. However the evidential 
approaches, and especially the inverse pignistic 
transformation based method, as it derives directly masses 
from probabilities, achieves very good performance level. 

The decision rules do not have great influence except 
the maximum belief one, which when applied with the 
proposed approach present slightly higher error rates. This 
can be explained by the sharper behaviors of both the 
proposed data alignment method and the maximum belief 
decision rule: lower consensus is made between the 
sensors during the combination step as detailed in section 
2.2.2, and according to (2), mass allocated to partial 
ignorance after combination is not taken into account 
while calculating the belief, so not all available evidence 
is taken into account when making decision. 

 

 
 
Figure 5 - Evolution of the detection error rate according 

to the SFDR1,2,3 levels in normal operating mode. 
 

The second case study simulates a situation where one 
sensor’s SFDR level is different from the two others: 
SFDR1 equals -5 dB, which allow quite good detection 
rate according to the original signal. Two situations can 
then occur: SFDR1 ≤ SFDR2,3 and SFDR1 > SFDR2,3. The 
proposed evidential method has been designed to address 
the second situation when one sensor provides more 
specific information than others. The simulation results 
are shown in figure 6. Evidential approaches show lower 
error rates, especially the proposed method used with the 
maximum belief decision rule. This can be explained, 
once again, by their respective sharper behaviors. Indeed, 
more credit is accorded to the most specific sensor 1 
during the combination step and uncertainty brought by 
sensors 2 and 3 as their SFDR level decrease is less taken 
into account during decision making. 

966



 

 
 

Figure 6 - Evolution of the detection error rate according 
to the SFDR2,3 levels while SFDR1 = -5 dB. 

 
Previous results lead to an interrogation in case of a 

strong sensor failure. Indeed, if a sensor provides a wrong 
measurement tainted with low uncertainty (high du(1),u(2) 
and SFDR level) and no consensus is made, detection 
error rates should be high. Such a case has been simulated 
forcing the third sensor to give a wrong measurement and 
setting SFDR3 to 0 dB. Results are drawn in figure 7. As 
expected, the error rate increases quicker as SFDR1,2 
levels decrease using the proposed approach. The existing 
evidential approach show good behavior compared to the 
probabilistic approach. A closer look to figure 7 allows to 
see that the results obtained using the proposed method 
are actually better as SFDR1,2 levels are higher than 10 dB 
so that less credit is given to the wrong sensor as it is 
considered to be less specific. Then the existing evidential 
method is the best suited between 10 dB and 0 dB SFDR1,2 
levels as its smoother behavior allows taking sensors 1 
and 2 measurements in consideration at such SFDR1,2 
levels unlike the proposed method. Finally the 
probabilistic approach shows better performance for 
SFDR1,2 levels lower than 0 dB because no additional 
credit is then given to the wrong sensor as it is the case 
when using evidential approaches. No general conclusion 
on the best suited approach can be drawn considering the 
strong sensor failure state as it depends on the healthy 
sensor SFDR level and, consequently, on the application 
case. 

The fourth addressed case study considers the weak 
failure state of sensors 2 and 3. As they only provide 
noise, singularity detection problems should appear when 
this noise is important enough to provide measurements 
where du(1),u(2) is as important as in the healthy signal 
brought by sensor 1. This example allows us to emphasize 
the role of an important parameter which is the distance d 
as defined in (10) but applied to the original signal Y: 
dY

u(1),u(2). This parameter not only has influence on the 
location of the detection error zones, but also leads to 
different behaviors according to the used method. The 
simulation results of the fourth case study are drawn in 
figure 8. 

 

 
 

Figure 7 - Evolution of the detection error rate according 
to the SFDR1,2 levels when facing a strong failure state of 

sensor 3 with SFDR3 = 0 dB. 
 

The evidential based approaches show lower detection 
error rates in general, and the proposed approach gives 
better results for 10 dB < SFDR1,2,3 < 20 dB whereas the 
existing approach is the best to use when SFDR1,2,3 > 20 
dB. Once again, taking epistemic uncertainty explicitly 
into account provides lower error detection rates. Lower 
consensus provided by the proposed approach allows 
better detection when sensor 1 is not much perturbed by 
noise. The decision rule does not have a great influence in 
this case, but one can notice that as SFDR1,2,3 levels 
become lower, the maximum belief rule tends to show 
slightly higher detection error rates than the maximum 
pignistic probability rule. 

 

 
 

Figure 8 - Evolution of the detection error rate according 
to the SFDR1,2,3 levels whan facing a weak failure state of 

sensors 2 and 3. 
 

The case studies exposed above demonstrate the better 
ability of evidential approaches to face unexpected sensor 
behaviors. They also provide good results even when only 
random effects occur. Other cases have been 
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experimented that confirm this trend. They are 
summarized in table 1.  

 
Sensor state Normal Weak Failure Strong failure 

Affected sensors  3 2 1 2 1 2 
High dY

u(1),u(2) (>0.7) ○ ○ + + + + 
Low dY

u(1),u(2) (<0.3) + + + ○ ○ + 
○: Cases exposed in section 3.2 
+: Cases where simulations were conducted but not 
exposed in the paper 
 
Table 1 - Cases studies on which numerical experiments 

were conducted. 
 

An important criterion to choose between the different 
approaches appears to be the need of consensus to take a 
good decision. Indeed, the sharper behaviors of the 
proposed approach and the maximum belief decision rule 
are well adapted to perform singularity detection when 
considering at least one reliable sensor, so no consensus 
has to be made. However, we showed that if a sensor 
seems to be reliable but is actually in a strong failure state, 
more consensual approaches allow to perform lower 
detection error rates. In some cases, different approaches 
should be used according to the SFDR levels, enforcing 
the fact that approaches could be used complementarily. 

More investigations are needed concerning the 
influence of the dY parameter, but simulations show that as 
the detection becomes more difficult (dY decreases) the 
evidential approaches show lower error rates. Moreover, 
the user defined parameters Pconf and θn used with the 
proposed approach should also be investigated as they are 
important levers of the modeling of uncertainty in the data 
alignment proposed approach. More specifically, the case 
of some probability density functions, like long tail 
distributions, raises questions about the definition of θn. 
Influence of sources number is also an interesting point to 
investigate. 

4 Conclusion 
The problem of singularity detection in signals 

considering hostile environments and redundant 
multisensor cases has been addressed. Two evidence 
theory based approaches have been exposed, 
implemented, and compared to the probabilistic approach. 
Simulation results shows that evidential approaches are 
generally best suited to face sensor dysfunction, and also 
provide good performance level in classical situations 
where only random effects are considered. The proposed 
approach, which has especially been designed to merge 
information coming from redundant information sources, 
shows lower detection error rates when at least one sensor 
is reliable. However, further investigation has to be made 
to explore the whole parameter space. Guidelines have 
been given to choose the best approach considering the 
application case. The complementarity of the different 
approaches has been emphasized, as choosing 
automatically the case’s best suited method could improve 
the overall performance of a monitoring system.  
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