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ABSTRACT

In this paper we present an internal variable-based homogenization of a composite made of wavy elastic-
perfectly plastic layers. In the context of a strain-driven process, the macrostress and the effective yield
surface are expressed in terms of the residual stresses, which act as hardening parameters in the effective
behavior of the composite. Moreover, an approximate two-steps homogenization scheme useful for
composites made of matrix with wavy inclusions is proposed and a comparison with one computational
and one semi-analytical homogenization method is presented.

1. Introduction

Modeling the mechanical behavior of non-linear heterogeneous
materials has been the subject of many research papers from
both mathematical and computational point of view
[4,6,9,9-11,13,16,22,25,29,35,36,38—42,49—51]. Special attention
has been paid to the case of composites with properties and/or
geometry dependent on a non-linear periodicity function
[5,7,8,14,15], and/or non-linear constitutive behavior of the con-
stituent materials [14,15,52,53]. For general plasticity equations and
viscoplasticity with non-linear hardening we refer to the book [1];
which covers constitutive equations of “monotone type”, and to [2].

The role of dissipation inequality in homogenization of dissi-
pative materials is crucial: it needs to be considered in both micro-
and macro-level in order to lead to the correct constitutive evolu-
tion equations relating stress and internal variables. The local
problem in generalized standard materials (GSM) was completely
described by Refs. [30—34,43,47] (see also [17,18,20], based on the
fundamental works of [21] and [37]. Generalized materials are
described by state and internal variables. Generalized forces are
then defined from the free energy function expression in terms of

the above variables. Additionally, the dissipation inequality holds
and by the Lagrange multiplier's technique gives the evolutionary
equations.

Wavy architectures can be found in the nature or constructed
for functional purposes or accidently obtained in manufacturing
processes and the thermomechanical behavior of forming ma-
terials or structures under specific loading and environmental
conditions is of special technological interest [23—26,54]|. Wavy
multilayer materials and structural components are character-
ized by a wavy periodicity at several scales: corrugated cross
sections used to stiffen structural panels, laminated composite
plates exhibiting manufacturing induced waviness with prob-
lematic behavior under compression, microstructures with
wavy architectures, biological tissues such as chordea tendenea
found in heart valves, where stiff collagen fibril crimp patterns
control the opening and closing of the valve leaflets [24],
continue to form the subject of intense research -effort
[22,25—28,45,54—56]. In nanotechnology, wavy interfacial
morphology can enhance the overall properties of composites
made of thin metallic and ceramic multilayers for magnetic,
optoelectronic and high-speed electronic applications [24]. Novel
fuzzy fiber reinforced composites are composed of carbon fibers,
wavy carbon nanotubes and epoxy matrix, with the carbon fibers
radially grown on the circumferential surfaces of the carbon fi-
bers [14,15,28].
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The objective of this paper is twofold: first, to present an
analytical dissipation inequality-based homogenization scheme for
a wavy multilayered medium made of elastic-perfectly plastic
components; second, to propose an approximate two-steps ho-
mogenization for a composite made of a matrix with wavy in-
clusions. In Section 2 a review on the role of dissipation inequality
in the homogenization process of rate-independent dissipative
materials is presented. More specifically, it is verified that the
overall behavior of a heterogeneous material is a generalized
standard material behavior and the strain-driven localization
problem is formulated. Moreover, the fundamental assumptions, of
additivity for the free energy and of dependence of its effective
value on the microstrain and a finite number of micro-internal
parameters, allow for defining the effective generalized forces
through the variation of the effective energy, and subsequently of
expressing the overall dissipation starting from the microstresses
and the rates of internal micro-hardening “forces” and microplastic
strains, in correlation with micro-yield surface. In Section 3, the
analytical homogenization of a wavy layered composite made of
two elastic-perfectly plastic materials is presented. This includes
the analytical expressions for the effective constitutive law, for the
macroscopic yield surface and for the residual microstresses in
terms of the macrostrain and the plastic microstrains. An inter-
esting finding is that, as expected [49], even if the constituents are
isotropic and without hardening, the composite exhibits anisotropy
and hardening due to the presence of residual stresses in the
effective yield surface. Finally, in Section 4, a two-steps approxi-
mate homogenization scheme is presented for a composite with
wavy inclusions and numerical examples of the proposed homog-
enization scheme are presented, corresponding to a unit cell under
monotone and cyclic loading respectively. Moreover, the results are
compared to one semi-analytical and one computational (Finite
Volume Direct Averaging Micromechanics-FVDAM [41], method.
The construction of the effective yield surface completes the nu-
merical experiments. In three appendices, all matrices needed for
the analytical expressions of micro-and macrovariables are
presented.

2. The dissipation in heterogeneous generalized standard
materials

We consider three spatial variables that coexist for the
description of the problem. The first one is the macroscale denoted
by' x in the heterogeneous body, at which the heterogeneities,
characterized by ¢, are very small compared to the whole structure
and can be considered as invisible. The second spatial variable is the
microscale denoted by % which is the scale for the heterogeneities
(Fig. 1). The third spatial variable is used only if the body exhibits a
generalized (non-linear) periodicity.

The case of materials with generalized periodicity is of special
interest for two reasons: first, since it corresponds sometimes to a
non-repetitive geometry as in composites with cylindrical period-
icity and second, it uses simpler unit cells and may allow semi-
analytical homogenization methods [53]. The choice of the repre-
sentative volume element is made with respect to the generalized
periodicity vector function o(x) and Y = [0,y1] x [0,y2] x [0,y3] is
chosen to be the basic cell, where

y= : (2.1)

! In the sequel, every vector or tensor will be denoted with two ways: a bold-
symbol or its indicial notation. The scalar quantities appear in regular fonts.

macroscale

microscale

Fig. 1. Macro- and microscale.

The dependence of functions on the microcoordinate is per-
formed (in a non-periodic way, except if g(x) = x) via

o |

y=-. (2.2)
In this paper we focus our attention on the multilayered mate-
rials (see Fig. 2). For simplicity, we present the case of structures
with layers parallel to the x3-axis. Thus, at every macropoint (x1,X2)
microstress and microstrain are uniform in every phase with values
depending on (x1,x2) [52]. More specifically, the angle 6(x1,x) of the
tangent at the macropoint with xq-axis enters the equations of
microstress equilibrium and the equations of continuity at the in-
terfaces, as well as the effective tangent modulus at (x1,x2).

Let us now denote field variables ¢°, ¢ and u' as microscopic
variables and =, E and u°® as the macroscopic variables. The
macroscopic quantities depend only on the macrocoordinate x. It is
worth noticing that both classes of deformation fields are related to
the representative volume element located at x. Away from the
boundaries, stress and strain fields conform at the microlevel to the
generalized periodicity conditions:

0

a2, 0 are Y — periodic functions of y. (2.3)

The actual displacement u® within Y located at x is assumed to
be expressed as a sum of a linear and a generalized-periodic part
[48,50,52].

u(x,y.y) = Egy; +u} | (24)

where

ul =ul(x,y). (2.5)
i)

Fig. 2. Wavy multilayered material.



is periodic with respect to y. Microstrain is then defined from (2.4)
with respect to the microcoordinate,
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while the macrostrain is defined with respect to the

macrocoordinate,
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In Ref. [52] it was shown that
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As it was proved in Ref. [52] the microstress satisfies the equa-
tion of equilibrium
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under periodicity conditions.
Concerning the macrostress, this is defined as the mean value of
the microstress over the unit cell,

1
2y = () =7 /agdy. (2.11)
Y

In Ref. [52] it was shown that microstress and microstrain (i)
satisfy the Mandel-Hill's lemma
(oed) = 2. (2.12)
and (ii) are the two-scale convergence limits [3] of the heteroge-
neous problem over the whole structure.

For the moment we assume that the material is a homogeneous
generalized standard material (GSM, [46]. In classical rate-inde-

pendent plasticity the free energy v is a function of the internal
variables

¥ =yl(e,a), (2.13)
where (e,a) are the state variables, e = €° + £ is the strain tensor
decomposed into an elastic and a plastic part, while a = (¢P,§) are
the internal variables. Here we assume that the internal variables
are the plastic strain tensor ¢’ and a hardening vector £. We also
assume that the free energy is decomposed into an elastic part
(stored energy) W="s(e—¢"):C:(e—¢P) and a plastic part HP(§) which
for simplicity is assumed to be independent of the plastic strain,

w(e,a)zé(efep) :C:(e—€P)+HP(E). (2.14)

Then, the generalized forces A = (Ap,Af), associated to the in-
ternal variables a, are given by

L A (.

oy
0P )

where ¢ is the stress tensor and q is the internal hardening “force”.
Thus the plastic criterion can be written

f(AP.A%) <o. (2.16)
Additionally, the dissipation function is given by
d=oc:¢—-Yy=0:6— al: (é—ep-)—i-wf)
oe 3
(2.17)
=0o:é ,g_‘é.ngP (P +ATE=A:a
The dissipation inequality is written
d >0 forevery AP, A° satisfying f(AP,A%) <O. (2.18)

Then the normality law is obtained simply from Eq. (2.18) by
minimizing
—d + if (AP, AY) (2.19)
over AP, A%, where X is a Lagrange multiplier. Therefore the problem
of determination of the evolution equations leads to the problem of
minimization of the Lagrangian
minQ (AP, A%) = —AF : &P — A% -£ + if (AP A) (2.20)

from which taking the first variation with respect to AP A
respectively yields the evolutionary equations

o s of . . of
P— )2 E=).
€ f 9A°

0AP’
These equations must be supplemented by the Kuhn-Tucker
conditions

(2.21)

f<0, i>0, fi=0. (2.22)

Let us now pass to the verification that the overall behavior of a
heterogeneous material is a GSM behavior [37,49]. We consider the
strain-driven localization problem: for given macrostrain E and
internal parameters a® in the unit cell Y, find the relation between
macrostress £ and macrostrain E if

¥ =symvu® inY (%) = E, divye® =0inY, (¢%) =X,
(2.23)

0(.0 40
002761// E':.O,a )7 WO(EO,QO) :%(eofepo):coz(eofepo)+Hp0(50)7
£

(2.24)

o¥ and £ periodic on aY. (2.25)

We note that, for this verification, special form Eq. (2.4) of the
displacement u° is not needed. In Ref. [49] it was shown that this is
an elastic problem giving the solution
o® = 6% (E,a°), &° = €9(E,a°), == (o°(E,a?)). (2.26)

Consequently, microstress and microstrain can be obtained from
a strain-driven cell problem as functions of the macrostrain and the

internal variables. The main difficulty is that a® must be reduced to
a finite-dimensional field, and this issue is the main subject of the



computational methods developed by Fish, Dvorak, Suquet and
other researchers [17—19,30,31,34]. In order to determine the
effective constitutive behavior of the composite, we assume that
the effective free energy satisfies both relations
W= (y(e%a%), w=w( a). (2.27)
In the above expressions, microstrain depends on the macro-
strain via the second solution Eq. (2.26) of the localization problem.
In other words, the overall dissipation can be expressed too as a
function of the macrostrain and the internal variables. A conse-
quence of the assumptions Eq. (2.27) is an application of Hill-
Mandel's lemma:

ow  oyl(e0.a%) 00 o 00
ﬁfT.ﬁ)f(a’)Kﬁ =z, (2.28)
where we used that %LEO is an admissible strain since

00 0 0 ou?
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We note that from Eq. (2.26) the variation of microstrain is equal

to 0¥ = %5 0F + 27 - 5a®, thus

0
(00 : 56%) = (0) : (86°) = (60) : GE + (a® :g% cea%y,  (2.31)
therefore
0
(” :% - 6a%) — 0. (2.32)

The effective generalized forces 9l are defined in terms of the
variation of the effective energy by

ow
U oa® = ——;: oa’. (2.33)
oa
We note that this definition has a practical meaning only if the
field of internal variables a® is approximated by a finite number of
variables according to the microstructure, a task which is not trivial.

Using the definition y°=y(¢%a®) and (2.32),

u9 (0 a® 0 549 (£0 qo
o - oa% = _<M . de” : 6a%) — (M : 6a)
daP e oa0 da0
__ W) : 0a0).
oao
We conclude that (2.34)
9 : 6a® = (A : 6a°). (2.35)

Based on the above, the overall dissipation D is given by

D= (d) = (o°: &% — y%) = (A: % = % : d°. (2.36)

Therefore the homogenized dissipation inequality can be
treated starting from the microstress ¢° and the rates of the in-

ternal micro-hardening “forces” qO and micro-plastic strain £”, in
correlation with the micro-yield surface f°. This is equivalent to
the statement that the micro-evolutionary equations derived from
the micro-dissipation inequality satisfy the macro-dissipation
inequality too.

3. Two phase wavy multilayered composite made of elastic-
perfectly plastic materials

3.1. Microstress in terms of macrostrain and plastic microstrains

In this section we will present an analytical solution of the strain
driven homogenization problem Eqgs. (2.23)—(2.25) for a two phase
wavy multilayered composite made of elastic-perfectly plastic
materials. We recall that this problem admits that the macrostrain
E and the internal parameters £ are known in the unit cell.
Generally speaking, it may be the subject of a computational
method based on assumptions for the distribution of microplastic
strain £P (see for instance [32]. More specifically, we will present the
analytical expressions for microstrain and microstress tensors,

0 — ¢l (E,epo), 0% = o° (E, ePO), (3.1)
for the macroscopic free energy

w— W(E,el’o), (3.2)
the macroscopic plastic strain tensor

EP — EP <E,ep°>, (3.3)
and the effective yield surface

®— CD(E,EPO). (3.4)

In Fig. 2 we see the multilayered composite under consideration.
The generalized periodicity function describing the parametric

equation of the wavy surface reads g(x) = x, + Hsin (2T" xl) = const.

We will use the fact that in every phase of this composite, stress
and strain tensors are uniform for fixed x1 [52]. This is a result of the
homogenization with respect to xy-axis presented in Ref. [52].
However, this is a major hypothesis for a two dimensional ho-
mogenization. Due to the uniformity of stress for fixed x4, plastic
strain components are also uniform [49]. This uniformity of stress
and strains allows us to follow an alternative approach from the one
presented in Ref. [52]. Instead of working with a generalized peri-
odicity function @, one could simplify the computations by intro-
ducing the local angle # of the layers at each point (see Fig. 2).

We recall that the microstrain is given by

O (u) :E+e(u1)7 (3.5)
with
<e(u1)> - 0. (3.6)

Considering only two layers, we will use the superscripts I and Il
to define quantities at each phase. Under this condition, the last
equation reads

|

> e =0, (3.7)

r=I

where ¢" and €' (r = L,II) denotes the volume fraction and the pe-

riodic part of the microstrains respectively of the phases I and II.
Considering isotropic material phases, the constitutive equation

for each phase r is written



Table 1
Computational plastic algorithm.

1. Caleulate the matrices (i) G5! from Apendix B, (ii) G124 from Appendix C, (iii) 517 from equations (3.23),

(iv) C"°™ from equation (3.27) and (v) R"'!! from (3.28). These computations are done only once.

2. At time t = n we know all quantities. At time ¢ = n + 1 we know the macroscopic strain tensor E("*+1)

3. Calculate the trial deviatoric microstresses from the relation:

gtrial(n+1) _ (n+1) _ _p(n)
sl dD) _ pg <el;l —enin )

where e;; is the deviatoric microstrain.

4. Check the trial yield criterion f7 *181(n+1) fo1 each phase. If it is negative, then proceed to the next step, else:
a) Initialize by setting AX(0) = 0, o(P+1)(0) = (1)

b) Identify
Fn+D) =

(nt1) _ g _ [T OH@HDmT))
I = 20— 3
¢) Compute

AL AN

am+D(m**4+1) _ [ (n) + AN /%_

f(n+1)(A/\(m**))
F/nFD (ax(m™)y”

S;rlml(n,ﬂ)Sek,.,lml(wrl) —aGarm*) _ ﬁ%H(&(nH)(mM))Y

d) 1f [£F(* D | > tol, set m** = m** + 1 and return to b).

e) If [ F("T1)| < tol, then

eP m(nt1) _ op r(n) | Ay

&7 trial(n41)

v trial(n+1) ; gr trial(nt1)

193
GO Tt _ gr G- En+1) _ S sh P B(n+1)
B=1

© © N o

Set n = n + 1 and return to step 2.

5. Calculate the microstrains from the relation (3.21).
Calculate the macroplastic strains from the relation (3.28).
Calculate the macrostresses from the relation (3.29).

Calculate the residual stresses from the relation (3.31).

o = (eof - epf) —C:(E+e —eP), (3.8)
where C denotes the isotropic elasticity tensor. Considering the
local angle # at each point of the wavy material, one could perform
the usual transformation from the global x to the local ' coordinate
system

" =Q-e%Q", ¢=Q-eQ, (3.9)
cosd sind O
where Q = [ —sind cosf O
0 0 1

In the sequel, we will use Voigt notation and write stress and
strain tensors in the form of vectors and all the fourth order tensors
as 6x6 matrices.” In this notation, any matrix or vector

(o9 — a?")sinzﬁ - (ag’ - og”) sin26 + (ag’ - og”) cos?0 =0,
7(0(5)1 — a?”) sin 6 + <021 — 02") cos =0,

(o8 - Ugu) <Sin2 0 — cos? 6) +1 (a‘l”

2 2

2 According to the Voigt notation, the double indices are substituted with only
one, following the rule 11— 1,22 — 2,33 — 3,23 — 4,13 — 5,12 — 6. Moreover, the
shear terms of the strains e4, e5 and g denote the shear angles 2e,3, 2e13 and 2e1o
respectively.

- 0’(1)”>Sil'l 20 —1sin 2 0(08

multiplication is denoted by the symbol {-} of single contraction.
Using Voigt notation, continuity of tractions and strains (see Fig. 2)
gives

ag/l — 0(2)/117 02/1 — 02/117 O_gll _ ag/" , (3.10)
and

il Al il Al i Al

el =¢,e5 =163 ,65=¢5. (3.11)

From Eq. (3.7) and (3.11), it follows that ¢] = ¢ = &3 = 0,r =111
Thus, using Eq. (3.9) we obtain

€} cos? 0+ €5 sin2 0+ ¢} sin? 0=0, =0,

€k cos 0 + &l sin g = 0, (3.12)

for r=LII. From Eqgs. (3.9) and (3.10), we obtain the following re-
lations between the stresses:

(3.13)

o) o,

Using the constitutive relations Eq. (3.8), we can rewrite Eq.
(3.13) in terms of the unknown strains ¢' and &,
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_ C44)E4 + Chyely — Cllyell — dlyeb! + a44sp"] tan ¢

(3.14)
As we already mentioned in the begining of this section, the
macrostrain E and the plastic strains ¢’ and e’ are considered to be
known throughout this analysis.
Using Eq. (3.7) that connects s4 with &l s , Eq. (3.12)3 that connects
e) with ¢f, and Eq. (3. 5) the relation Eq. (3 14) allows us to compute
the total microstrains 3’ and £,
n(cl _ cl I _ cll I
Q=1 ¢ <C44 C44> cl <C44 C44>tan b cll Caq &
(1 + tan? 6) (c”Cf14 + c’Cf{4> (1 + tan? ¢) (c”Cf14 + c’Cl{4> (1 + tan? ¢) (c"C"14 + c’Cj{4)
I I I
o Caa Il Caqtan g Lyl Cyqtan g 2l
(1 + tan? ¢) (C”Cf14 + C’Cf{4) (1 + tan? ¢) (c”Cl14 + C’Cf{4) (1 + tan? 9) (c”Cf14 + C’Cf{4)
(3.15)
I il L —cll I
O [14d Caa — Cay E,—d <C44 C44> tan ¢ E-_d Caa ol
4= 2o (dict +dci )t 2o (dic +dcl) ° (1 20\ (clich 4 i) ?
(1+tan 0)(c Chy + 44> (1+tan 0)(6 4a € 44> (1+tan 0)<c 44t C 44)
I I I
L d Cia pll Cyqtand ol Cy tan o ag"-

(1 + tan? 0) ((:"Cf14 + c’C"{4)b4

The connection between &}, with ¢f through Eq. (3.12)3 and the
main Eq. (3.5), allow us to use the relations Eq. (3.15) and evaluate
also ¢! and 2.

Solving Eq. (3.12); with regard to &), using Eq. (3.7) and
substituting in Eq. (3.14); and Eq. (3.14);, we obtain

)

/ﬂz
T

El\

I

.

WWWW

Ty

Fig. 3. Laminate reinforced composite periodic structure with wavy inclusions and the
unit cell in the framework of generalized periodicity function in micro-coordinate
system.

(1 + tan?¢) (c”Cf14 + c’Cf{4>°5

—c
(1 + tan? 0) (c”C"14 + c’Cf{4)

KC"M +C—,I,Cf{4) +2tan2€(C“ + "C )}
KC“ + "C )tan3 0— <C]2 + "Cu) tan 0} &b
= (chy — clh)Ey tan 0.+ (Cf, — ) Ea tan 0
+ (Cly — fy)Es tan 0 — (Chy — €l ) Es — €114 tan 0
ClheP tan 6 — Clyeb! tan 6 + Clyeb! tan 6 — Cf,edl tan @
Cled tan 6 + Clyeb! — Cl,el
(3.16)

and

Table 2
Properties of constituents.

Property Elastic (ceramic) Elastoplastic (metal)
Young Modulus (GPa) 420 72.40

Poisson Ratio 0.25 0.33

Yield Stress (GPa) — 0.28667

Volume fraction 10% 90%
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<C5147c" )Estang—Clyeb! 4l
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(3.17)

respectively. Similarly, solving Eq. (3.12); with regard to sl, us-
ing Eq. (3.7) and substituting in (3.14); and (3.14),, we obtain

[(d{4 Cg4)+2tan e(cn+ c{1)] I
KCH+ —Ch )tan3€—(C + C )tane el

= (¢l —cfy)Er tan o — (cl, — cly)Ey tan g

- <C12 - C12>53 tan 6 + (C44 -cl )EG + C“& ! tan 6
— P tan 6 + Clyeb! tan 6 — Clyebl tan 6+ Cf,el tan 6
— Lo tan 6 — Chyeb! + el
(3.18)

and
no no i
2 C12 -+ ?C12 + C44 —+ FC44 86 tan 6

Il
+ {(C{’z +CC—IC{2)tan20— (C“ + C )] I
= _<C12 - C€'2>E1 - <C{l - CIl)EZ - (C{2 - C?Z)E3
(C44 - C£{4>E5 tan 6+ Cipel’ — Clhe" + Cfy b
— b 4 el — b — el tan 6 + Clyel" tan ¢
(3.19)

respectively. The system of Eqs (3.16)—(3.19) for the unknowns
5 and &f (r=1,2) takes the linear form
M -x" =N, (3.20)
where x" = (¢; e5)" and the matrices M" and N are given in

Appendix A for r=1.
Finally, the microstrains, in compact form are given by

)i
=Gp-E+> Gp-e,
B=I

(3.21)

where Gp, Gf and Gj; are 6x6 matrices, whose components are
given in Appendices B and C. The quantities G}, represent the elastic
strain concentration tensors [44].

Moreover, the microstresses are given by Eq. (3.8). These ex-
pressions, after proper manipulations are written

11
0" = C"-GL-E-_Sp-e®, (3.22)

B=I

where

Sl = c’-(l— Gi), Sh=-c-6p,

si— _cl.gl, si—cl. <I— fo), (3.23)

and I is the 6x6 identity matrix. The two last terms in the
expression of microstress can be viewed as initial stress vectors in
the computational process (see Ref. [12]. It is worth noting that all
matrices Gé" and G”; depend on tand.

3.2. Effective constitutive law
In order to compute the macrostress X in terms of the internal

variables, we need the macro-free energy, which is equal to the
average of the corresponding microenergy, namely

wel = %wo -g°ly, (3.24)

and through Eq. (3.22)
wel = %c’ (C’-G’EE +c. (c} - 1) -ep1> : <E - eP’)
- %c’ (c'-Gly-e")- (E—eP!) + %c” (c"-GE-E+C"-Gf-en)
x (E—e) + %c” (c"- (6 —1)-&P")-(E—e").
(3.25)

Macrostress, through Eq. (3.25) can be computed as follows,

el
2:%: (c’C’~G’E+c”C"-G’E’> ~E+%<c’C’~ ((;5 4) —dc'-6L
+dich ~c§’) eP! +% <c”C" : (GZ 4) —dich. Gl ! -G{,) ePll.
(3.26)
Setting
chom — Z cC-GE, (3.27)
and
-1
R — %(c’wm) : (c’c’- (G} - 1) —dc-@ + c”c"-cf'),
1 -1
R' = S(crm) - (" (G —1) - "6} + -6 ),
11
EP =N R ¢,
(3.28)
we have
= = Cchom (E_ EP). (3.29)
By introducing the quantities for the r phase
-1
L= C'-G} (c’"’m) , (3.30)
ol = C"-GL-EP — Zsf -ePB, (3.31)

B=I
and using Eq. (3.22) and Eq. (3.29), microstresses can be written as
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e = H} =+ o7, (3.32)

where HS and HY are the elastic stress concentration tensors [44]
and &% and ¢%! are the residual stress tensors.
The computational plastic algorithm of the proposed method is

presented in Table 1.

3.3. Macroscopic yield surface

Following Suquet [49], we first derive the dual macroscopic
potential as the average of the corresponding microscopic

o = (¢ (a?)), (3.33)

where ¢ and ¢! are the indicators of the yield surfaces of the I and
II constituents respectively

(3.34)

' = (a.f(e') =0),

where fis the yield function. Then the macroscopic yield surface is
given by

D=[=z, & =0 (3.35)
Since
o =0, (3.36)

the macroscopic yield surface is the internal envelope of d’ and d”
and has the expression

D= ():, i (Hg”-z n a%’!’)). (3.37)

The initial yield surface (a?e';" = 0) is given by



Diﬂit _ <27 F”I(E) -0

(3.38)
L LI
Fll(x) :f(HE -2).
The macroscopic yield criterion is given by
F=clfl 4 et (3.39)

The von Mises yield criterion for an isotropic component r in the
principal stress space can be written as follows,

V2dY, (3.40)

1
(05 = ob)> + (o — o5)> + (o5 — o1)?)" =

where r=LII. Through Egs. (3.32), (3.39) and (3.40) we have the
yield criterion for the composite as follows,

I

Do (23A7 + 2345 + 2345 + 31304, + 353545 + B35 1AL + S04 + SoA% + T3A5 +

r=I

where AI(Hy) for i=123,456 material parameters and
Al(HS, ol,) for i=7,8,9,10 depend on the stress concentration
tensor Hs and the strain-history-dependent residual microstresses
ales, given by Eq. (3.31),

A} = (Hgqq — 221)2 + (Hzo1 — 231)2 + (Hz3y — 211)27

AL = (HYyy — Hpp)? + (Hipy — Higp)® + (Hisy — HEgp)?,

Aj = (Hgq3 — 223)2 + (Hiy3 — Hi3)® + (Hiss — 213)

A} = 2(Hyqy — Hyyq) (Hs12 — Hygp) + 2(Hspy — Hisy) szz - Hz32

A5 = 2(Hgy, — Hyp) (Hy3 — Hipz) + 2(Hsg, — Hysp) (HS 523 233

A§ = 2(H%yq — H5yq) (Hg13 — Hia3) + 2(Hsoy — Hysy) (Ho3 — Hiss
7 =2(HS11 — H31) (0rest — Tes2) +2(Hyo1 — Hy31) (0Tesa — Ores3)
g = Z(ng - ngz) (a;es] - U?esz) + Z(HEZZ - H§32) (0;652 - U;€S3)

Ay = 2(H§13 H£23)2(0:es] - U?esz) + 2(H§23 - H§33) (U?esz - U;eSB)
r r

2 2
- ‘7;353) + (‘7;(53 - ‘7;95]) :

Coefficients A7Ag,A9,A10 of the macroscopic yield criterion Eq.
(3.42), which depend on residual microstresses, act as hardening
parameters.

In conclusion, in this section, we presented the analytical ho-
mogenization following direction x; of a wavy multilayer under the
assumption that the distance between the wavy layers is very small
compared to the wavelength L (see Fig. 2). The result of this ho-
mogenization is a continuously graded (following direction xp)
effective material. In the next section we will present an approxi-
mate two-steps homogenization of a locally periodic composite.

4. Approximate two-steps homogenization of locally periodic
composites with wavy inclusions

In this section, we investigate the case of a composite consisting
of a matrix with periodically ordered wavy inclusions (see Fig. 3). In
Ref. [53] a two-steps homogenization scheme is presented for the

)+
)+
)+

+2(Hz3q —
+2 232
+ 2(H333 —

case of elastic isotropic constituents. The first homogenization step
with respect to direction x; leads to a continuously graded, in Ref. x4
direction, material. The second homogenization step with respect
to xj-direction, leads to an orthotropic effective material. In this
section, we will extend this method to the case of two elastic-
perfectly plastic constituents. We note that for the composite of
Fig. 3 the continuously graded material obtained from the first step
of homogenization includes the layers of the matrix perpendicular
to x1.

We present the example of a wavy layered two-phase composite
structure with waviness equal to 0.05, 0.20 and 0.40. The waviness
is defined as the ratio of the amplitude H to the wavelength L, % (see
Fig. 3). The composite is made of an elastic and an elastic-perfectly
plastic material, whose properties are shown in Table 2. We use the
algorithm presented in Section 3.2 (for convenience we use the

(3.41)

)i Zcr\/_oy =

abbreviation DIPH: Dissipation Inequality-based Periodic Homog-
enization) and we compare with the other two methods, GPH:
Generalized Periodicity Homogenization [52] and FVDAM: Finite
Volume Direct Averaging Method.

)
Tles3 — Trest ) )
n )

r
Ores3 — Ores1)»

2(H231 - H211)(H232 — H12),

2(Hs 232 2)( 233 Hg13), (3.42)
2(H%3q — Hyyp) (Hiss — Hygs),

( (U;e res] ’

(H (

(H (

=11
211)
z12)
2]3)

The numerical results are obtained from a MATLAB code that
we have developed in order to solve the algorithm of Section 3.2.
The input data for this new approach are macrostrain and
micro-plastic strains. We investigate the response of the unit cell
to three strain histories, corresponding to normal macrostrains
E1, E; and shear macrostrain Eg respectively, starting from a
deformation-free state up to a maximun value of macrostrain
0.01 (all the other constituents of macrostrain equal to zero).
We apply the computation procedure to 21 discrete points
on x; direction, having different values of 6, and obtain
effective values of stress and strain at every discrete point. Next,
we apply the trapezoidal rule over entire length L in order to
obtain the mean values of effective stress and strain at the
macropoint.

In Figs. 4—6 effective stresses =1 and I, are depicted with
respect to the corresponding effective strains for the three
methods (DIPH, GPH and FVDAM) for waviness values 0.05,
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Fig. 5. Macrostress vs macrostrain for waviness 0.20 and strain increment AE; (a and b), AE, (c and d) and AEg (e).

0.20 and 0.40. We observe a total coincidence between DIPH
and GPH. In addition, a total coincidence between these two
methods and FVDAM for flat structures exists. On the contrary, a
maximun difference 10% to effective stresses between DIPH
and GPH on the one hand, and FVDAM on the other hand, is
observed for waviness values 0.05, 0.20 and 0.40. A reason for
the difference is that in Refs. DIPH and GPH, homogenization is
performed in two successive steps. In general, all three
methods show similar behavior to the same boundary
conditions. Moreover, under pure shear loading Eg, in DIPH and
GPH waviness causes a more important hardening than in
FVDAM. In other words, the elastic (“stiff’) constituent is
able to support additional load. This hardening effect is not
monotone as waviness increases (see Figs. 4(e), 5(e) and 6 (e)). In
addition, yielding occurs in a higher value of stress and
strain in comparison with the flat structure. DIPH and GPH
overestimate =g compared to FVDAM. In the case of a flat struc-
ture, elastic-perfect plastic material dominates to the effective
behavior since, due to continuity conditions Eq. (3.10) and
through constitutive law, an unilateral behavior is expected with
the elastic (“stiff’) constituent not being able to support

additional load. This is not observed in the case of a wavy
structure, where the elastic (“stiff”) material contribute to the
“burden sharing”.

In order to compute the macroscopic yield surface for three
given sets of macrostrain and residual microstresses, we
use Wolfram Mathematica 7.0 to represent Eq. (3.41). The first
set comprises macrostrain E; = 0.004 and residual microstresses
equal to O (initial yield surface), the second set comprises
macrostrain E; = 0.01 and the corresponding residual micros-
tresses, and the third set comprises macrostrain E;=0.04
and the corresponding residual microstresses, obtained in a
wavy structure (waviness 0.40) with the properties of Table 1.
The values of parameters A; are computed for the straining
cases under study from Eq. (3.42) by applying the trapezoidal
rule to the results given by the algorithm in discrete points. The
shape of the yield surface depends on the applied boundary
conditions. From the comparison of the yield surfaces, depicted
in Fig. 7, a slight displacement of the yield surface can be
observed.

Finally, cyclic loading is studied in the case of a flat and a
wavy structure (waviness 0.40). Equal increments of macrostrain
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along x, axis are applied. A stabilization appears without kine-
matic hardening (see Fig. 8). We note that we also
performed numerical examples for a composite made of
bilinear elastic-plastic constituents and a kinematic hardening
effective behavior is observed. This result, as well as additional
results concerning the effective behavior of locally periodic
composites with wavy inclusions, will be presented in a forth-
coming paper.

It could be of interest to note that the proposed method differs
from the method described in Ref. [52] in the following points: (i)
all functions are now expressed in terms of E and &P, (ii) the pro-
posed procedure needs only the computation of the effective elastic
modulus €™ instead of the effective tangent modulus D with
computation saving.

5. Conclusions

In this paper, the analytical homogenization of wavy multi-
layered media made of elastic-perfectly plastic constituents is
presented. Based on the generalized periodicity of stress and
strains, all micro-variables are expressed in terms of the macro-
strain and the microplastic strains, which are the internal variables
in the cell. Assuming additivity of dissipation and energy, the

macroconstitutive law is then derived from the overall energy
function and dual dissipation potential. Moreover, analytical ex-
pressions for the macroelasticity tensor and macroyield surface
are presented, from which the anisotropic and hardening overall
behavior of the composite is proved due to the presence of
microresidual stresses.

Additionally, in this paper the approximate two-steps homog-
enization of composites with wavy inclusions is presented. The
method is illustrated through numerical examples of various
strain histories and through its comparison with one semi-
analytical and one computational homogenization method. The
comparison results with the Finite Volume Direct Averaging
Method are satisfactory in the elastic behavior, as well as for all
strain-paths studied in the elastic-plastic behavior, except for the
case of shear straining. For this case, the proposed method over-
estimates the effective hardening behavior, due to the assumed
stress uniformity for fixed x,. Homogenization approaches based
on the dissipation inequality are numerous. However, the present
contribution combines homogenization of a wavy medium and
homogenization with elastic-perfectly plastic component. The
limitations of this method are related to the difficulty of handling
arbitrary generalized periodic functions in a three-dimensional
setting.
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Appendix A. The system of Eq. (3.20) ( G’) 1 (B.4)
E)33
Using the following substitutions,
& = C’ IC{;7 &UfC' C,-'j’, (A1) (G’) —<G’> —(G’) —(G’) -0
E)m EJgy — 3 EJag —
we have for the material I c,—c
I 44
(GE>44 1= G (B.5)
M = Qg4 + @11 (tan 0)2 aq1(tan 3)3 —aqp tan g I 1l
~ ~ 2 _ - I Cag —Cyy
aqp tan 6 4 ayy tan 0 a12(tan 0) — a1 (GE) = tan ¢
45 C]
and
@q1Eq tan 6 + @pE; tan 0 + aqpE3 tan 0 — ayqEg—
—a11£‘131 tan 0 + o1& tan 6 — o, tan 0 + oy eb! tan 9
Nl = 70(]28!’ tan @ + 0[12817” tan ¢ + lX448pl 5{482”
a12E1 + @11 Ey + @2E3 — aggEgtand — 0(12811” + 0(1112811j L
*0[111(:2 + a’lll 512) I 0/1253 + a’llzeg I + afme}é Ttano — a£{4e€ Mtang
Appendix B. Matrices G and GY
Using the substitutions
) (G)5y = (Gh) s, = ()55 = (Gh)sg =
Dé]ztal'l 0 — aqq —5(11&11’139 + aqptand I
A —=——— ApH) = , I Cay C44
11(0) = dotM 12(0) detM (GE> o : tan 6 (B.6)
—ayq tan § — aqp tan o Qg4 + 011 tan? ¢ 1
Ar1(0) = , Ap() =" I C44—C44
21(6) detM! 22(6) detM! GE) _— G wantd
2 c!
G = (l+(tan0) )(c4+cuc )
(B.1)
and those introduced in Appendix A we have
Matrix Gk
G}:- » =1 - tan? 0(Ay1011 tan 0 + Ayp@qp) — tan 0(Aq1aqq tan 6 + Ajp@q3)
Gi— 1 = 7tal'1 6‘(A21a12 tan ¢ +A220[1]) — tan H(Ana]z tan ¢ +A12a11)
GL) = (B.2)

Gi
Gi

]4: (Gl>15 0

N N N NN

16

)]3 = —tan 6(A210[12 tan ¢ +A220{12) —tan 0(A1]C¥]2 tan ¢ +A]20(]2)
) = tan? ¢ (Ag10igq + Axp@gq tan b) + tan G(Aq1agq + A12044 tan 6)
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I
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Cr C
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11 11

C
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11 11
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()
(<)

Ci

(ct)
(ct)
(ct)
" (ct)
- (GE)zs =0 (W)= (-
(ct)
(ct)
(ct)

(Gg )33 — ' Appendix C. Matrices Gl, GlI, G|, GlI
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(B.8)
- ﬂ) (tan 09(A]1&44 + A]2a44 tan 0))
Il o Il _ Il . 1
CE ), = (G >52 - (GE>53 - <GE)56 =0
I I
1y () (Cas—Caa
O )sa = ( c”>< G 0) (B.12)
I i
I _1_ _ ﬂ C44 — C44
Cp), =1 ( Cu)( G tan 0)
Gi 61 ( c_,,) (A1@1 tan 0 + Ap@r2)
E CC"> (A1 tan 0 + Aqpaqq)
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1
n (A
CE 64 (GE)GS =0
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Matrix G}
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)
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