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(229)

Residual-based-compact schemes (RBC) of 2nd and 3rd-order accuracy are applied to a challenging 3D
flow through a transonic compressor. The proposed schemes provide almost mesh-converged solutions
i good agreement with experimental data on relatively coarse grids, which allows achieving a given
accuracy level with computational cost reductions by a factor between 2 and 4 with respect to standard
solvers.
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1. Introduction

The high complexity of turbomachinery flows, which are three-dimensional, unsteady, and often
transitional, requires powerful computational tools and models. Numerical methods generally
used in currently available simulation codes, of nominal second order accuracy at most,
often provide inaccurate results when applied to complex flow cases involving boundary layer
separation, vortical structures, shock waves and possible associated unsteadiness, unless very
fine discretization grids are used. In an industrial context, the computational domain is often
discretized by relatively coarse grids decomposed into several subdomains. As a consequence,
the numerical solution is typically far from reaching mesh convergence, and the results obtained
on a given grid may change significantly according to the numerical scheme in use. Moreover,
given the complexity of turbomachinery geometries, computational grids are generally highly
distorted: in such conditions, the accuracy of classical numerical schemes, which is typically
nominally second-order on uniform Cartesian grids, may be decreased to first-order only.
Nevertheless, numerical errors play an important role in the computation of turbomachinery
performance. For instance, dissipative schemes and coarse meshes do not provide a correct
description of vortex streets, which represent a substantial component of the blade profile losses.
This motivates the quest for numerical schemes able to provide an accurate description of the
flow field on rather coarse, non smooth grids and, at the same time, robust enough to tackle
realistic turbomachinery configurations.

In this work, the capabilities of recently developed residual-based-compact schemes (RBC) of
second- and third-order accuracy are assessed for a challenging 3D compressible turbomachinery
flow problem, namely, the Rotor 37 case. The NASA Rotor 37 is an isolated transonic axial
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flow compressor rotor with 36 blades. Extensive experimental data have been collected for this
case with the aim of validating the predictive capabilities of numerical simulation codes and
models (Suder (1996); AGARD Report 355 (1998)). Experimental information includes the
compressor characteristics at the nominal rotation speed, as well as radial distributions of the
pressure ratio, temperature ratio, and adiabatic efficiency downstream of the blades for mass
flow equal to 98% of the choke conditions. Numerical investigations available in the litterature
deal mainly with the assessment of turbulence models for the Reynolds-Averaged Navier—Stokes
(RANS) equations (see e.g. AGARD Report 355 (1998); Dunham and Meauzé (1998);
Tartinville and Hirsch (2006); Chima (2009); Ameri (2010)), and Large Eddy Simulations
(LES) (Hah (2010); Gomar et al. (2011)). RANS simulations often fail to predict the global
and local flow properties of NASA Rotor 37, due to the complex physical phenomena taking
place in this configuration (shocks, shock/boundary layer interactions, separation, shock/tip
leakage vortex interactions). LES calculations attempted up to now show a potential for better
predicting complex flow features (Hah (2010)): nevertheless, the use of too dissipative schemes
and subgrid models (mainly Smagorinsky-like models), in conjunction with coarse grid spacings
compared to the flow characteristic Reynolds number, lead to results that are not completely
satisfactory. If the impact of physical models on numerical predictions of the Rotor 37 flow
has been extensively studied, the effect of numerical discretizations has been paid much less
attention (an exception is represented by Chima and Liou (2003)), especially for orders of
accuracy greater than two, also because of the difficulty of achieving a robust behaviour of
higher-order schemes for this kind of challenging configurations. In this paper, we focus precisely
on the latter point.

Residual-Based Compact (RBC) schemes have been developed from some time now (Lerat
and Corre (2001, 2002); Corre et al. (2003); Lerat and Corre (2006)) for computing
multidimensional, inviscid and viscous, steady and unsteady, compressible flows. RBC shemes
of 2nd and 3rd-order accuracy have been implemented within the structured multiblock finite
volume solver elsA (https://elsa.onera.fr) developed by the DSNA Department of ONERA. A
robust implementation strategy on multiblock structured grids has been discussed in Michel
et al. (2011). Recent studies of the truncation error and spectral properties of unsteady RBC
schemes (Lerat et al. (2013); Grimich et al. (2013a)) have allowed to improve their stability
and ensure robustness for any flow condition. This improved version has been recently extended
to deformed curvilinear grids in a finite volume framework (Grimich et al. (2013b)).

In the following, after providing the main features of the proposed numerical method, the
Rotor 37 configuration is calculated for several operating conditions in order to predict the
rotor characteristics, and compare the results with the available experimental data and with
those provided by the baseline solver available in elsA (Jameson’s scheme) both in terms of
accuracy and computational cost. Then, more in-detail analyses are carried out for a specific
operating condition, corresponding to a mass flow equal to 98% the choked mass flow, for which
experimental radial distributions of the rotor performance are available. Conclusions are drawn
about the capabilities of RBC schemes of providing improved solutions in terms of accuracy,
for a reduced computational cost compared to standard schemes, and on the applicability of
higher-order schemes to complex 3D turbomachinery flows.

2. Governing Equations and Residual-Based Compact approximation

In the present work, turbomachinery flows are modelled by the Reynolds-Averaged Navier-
Stokes equations completed by a transport equation turbulence model. Precisely, the Spalart-
Allmaras model is retained among different choices available in elsA (https://elsa.onera.fr), since
it represents a good compromise among accuracy, computational cost, and numerical robustness.
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The main system of equations is approximated by means of RBC schemes of second-order or
third-order accuracy (Lerat and Corre (2001), Lerat and Corre (2002)). For simplicity, hereafter
we recall the design principles of the schemes for the 2D hyberbolic system of conservation laws:

wt+fx+gy:07 (1)

where t is the time, w is the conservative variable vector, f = f(w) and g = g(w) are flux
functions in the z and y directions of a Cartesian frame, and the subscripts denote partial
differenciation. The Jacobian matrices of the fluxes are denoted A = df /0w, B = dg/0w.
System (1) is discretized in space by using a RBC approach (Lerat and Corre (2001, 2002)). A
”residual-based scheme” can be expressed only in terms of approximations of the exact residual:

T:wt+fw+gy

i.e. the left-hand side of Eq. (1). More precisely, we consider a scheme of the following form:

(7o) 1o = dijk (2)

where 7 is a space-centered approximation of r at a mesh point j, k of a structured grid, called
the main residual and d is a residual-based dissipation operator defined in terms of first-order
differences of the residual.

Given a uniform Cartesian mesh, with grid points given by (z;,yx) = (joz, kdy) with steps oz
and 0y of the same order of magnitude, say h, and introducing the classical difference operators
in the j direction:

()3 = ()31 — (9)i) (o) = 5 (91— (9)36)

and the analogous operatos ds and ps in the k direction, the numerical dissipation d is constructed
as:

- 1 . 1 .
dj’k = 5(51 (@17“1) + 552 (CI)QTQ) (3)

where 71 and 79, respectively defined at (j + 1/2,k) and (j,k + 1/2) are also space-centered
approximations of r called the mid-point residuals, and ®; and ®5 are numerical viscosity ma-
trices that depend only on the eigensystems of the Jacobian matrices A and B and on the
steps dz and dy. They are designed once for all (Lerat and Corre (2006)) and do not use
any tuning parameter or limiter. Precisely, the dissipation matrix ®;, ! = 1,2 is given by:
D, = P_ldiag(npl(k))P, k = 1,., N with N, the dimension of vector w, and P, P~! transi-
tion matrices associated to the flux Jacobians A, B. Different formulations can be made for the
dissipation coefficients (pl(k), see Michel (2004). For the computations presented in this paper,
we retain the following formulation:

)

MiNg=1,... N., <‘)‘%)D

Lpl(k) = sgn()\l(k))mz’n 1, , m=12;m#I (4)

The dissipation d represents, to the leading order, a numerical approximation of the differential
operator:

+ %y (@or), (5)
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that is only first-order accurate. However, for an exact solution (r = 0) operator d vanishes and
d becomes consistent with a higher-order term that depends on the discretization chosen for the
approximate residuals 7 and has been analyzed in detail in (Lerat et al. (2013)). Residual-based
compact schemes are obtained by constructing the main and mid-point residuals by means
of compact discretization operators for the space derivatives. This is achieved by using Padé
operators. For instance, this allows up to fourth-order accuracy on a stencil of 3 x 3 points.

In the present work, we restrict our attention to RBC of second- and third-order accuracy and
to steady problems. We refer the reader to (Lerat and Corre (2001, 2002); Lerat et al. (2013))
for more details. The schemes under analysis are referred-to as RBC2 and RBC3 for second- and
third-order, respectively. On uniform Cartesian grids, the RBC2 and RBC3 schemes correspond
to the following choices for the main and mid-point residuals:

. 0 0 0 o\ (O1p1f)jk 0 o\ (021429) ).k
W“’“‘(”G‘S?) (”653>“’W+<”655> T U)o O

and

_ 6 orf | pidapag
1= T+ 2652
(P1)j4 2 [( +651> pawg + o TR

2

An equivalent expression to (??) holds for (72); ;1. where 6 = 0 corresponds to second-
order and 6 = 1 to third-order. For steady problems, the difference operators applied to w; may
be simplified to the identity operator I while recovering high-order accuracy as the solution
converges to the steady state.

When applied to the Navier-Stokes equations, RBC schemes rely on new residuals including
viscous fluxes contributions. These can be discretized without altering the difference operators
applied to convective terms, by means of a careful selection of Pade formulas with the same
denominators as in the Euler terms (see Corre and Lerat (2008)). For a 2D problem, the viscous
extension of the RBC2 and RBC3 are second-order accurate in viscosity-dominated regions and
tend to second- or third-order accuracy in inviscid regions if # = 0 or 6§ = 1, respectively.

The RBC2 scheme is generalized to curvilinear structured grids by using a cell-centred finite
volume formulation based on a straightfoward extension of the finite-difference numerical fluxes.
For RBC3, the high-order finite-volume formulation of Lerat et al. (2002) (see also Grimich et
al. (2013b) for a more detailed study, in particular for unsteady flows) is adopted to preserve
high accuracy on deformed meshes: this makes use of weighted discretization operators, in order
to ensure at least second-order accuracy on any deformed mesh, and third-order accuracy on
smoothly deformed meshes. Numerical tests show that the weighted formulation prevents the
appearence of spurious high-frequency oscillations on very distorted meshes (Michel et al. (2011);
Grimich et al. (2013b).

In order to take into account general multiblock grid configurations, numerical fluxes are locally
modified at corner cells of the subdomains to avoid using information from corner points, which
may be ill-posed. Precisely, residuals at corner cells are computed by means of a directional
non compact approximation. Numerical tests show that the proposed implementation improves
robustness, reduces computational costs and preserves accuracy compared to the exact RBC
treatment. The interested reader is referred to Michel et al. (2011) for the full details of the
multiblock implementation.

Concerning time integration, the solution is driven to the steady state by means of an implicit
time-marching procedure. For this purpose time is discretized by the robust 1st-order accurate
and A-stable backward Euler scheme. To reduce computational costs and preserve code mod-
ularity, a defect-correction strategy (Beam and Warming (1976)) based on the Roe-Harten
first-order upwind implicit operator is adopted, solved by means of L-U factorisation (Jameson
and Turkel (1981)).
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Table 1.: Computational grids.

Grid Cell count Cell layers in the tip clearance y*
Fine 1 480 704 24 2
Medium 185 088 12 )
Coarse 23 136 6 15
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Figure 1.: View of the coarser grid.

Finally, the turbulent transport equation, solved in an uncoupled manner with respect to
the main system of equations, is discretized through a second-order extension of Roe’s scheme
with a minmod limiter. The solution technique applied to the turbulence equations is that of
the baseline solver available in elsA (https://elsa.onera.fr) and will not be discussed further.
Research is in progress to extend the RBC formulation to turbulent transport equations using
either a coupled or an uncoupled formulation (Content et al. (2013)).

3. Numerical results

The NASA Rotor 37, designed and tested originally by Reid and Moore (1978), is an isolated
transonic axial compressor rotor with 36 blades. This case was initially included in a wider
research program intended to cover a range of design parameters typical of aircraft turbine
engine high-pressure compressor inlet stages. Much experimental data about rotor performance
has been provided by Suder (1996). The test case has been presented in the AGARD Report 355
(1998) and used for the validation of CFD codes and turbulence models. All the data available
for this case were measured with the rotor operating at the equivalent design rotational speed of
17188.7 rpm. A total of 13 sets of overall performance data were measured between the choked
mass flow (measured value mepoke = 20.93 Kg/s) and the stall flow rate (equal to 0.925 of the
choke value, i.e. 19.36 Kg/s, according to experiments). Overall performance includes average
total pressure ratio and adiabatic efficiency. Moreover, laser anemometer velocity data are also
available for a mass flow rate of 0.98 Mmchoke-

Numerical computations were run using a series of three meshes made up by six structured
blocks with conformal joins. The finest grid is clustered enough close to the walls so to be
relevant for low-Reynolds computations. The coarsest grid uses values of y* greater than 10.
The main properties of these meshes are given in Tab. 1. The medium and coarse grids are
obtained through successive agglomerations of neighbouring cells (eight by eight) of the finest
one. A view of the coarsest grid is provided in Fig. 1.

Boundary conditions based on local 1D Riemann invariants are used at inlet and outlet
boundaries. At the inlet, total pressure and temperature, as well as flow direction are imposed.
At the outlet, the static pressure distribution (following radial equilibrium) is imposed and
iteratively adjusted in order to achieve a prescribed target mass flow. The walls are assumed
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to be adiabatic. Numerical computations were carried out with a CFL number equal to 5 for
all cases. Computations were stopped once the relative variation in mass flow rate was lower
than 0.5%, which is sufficient to make meaningful comparisons among numerical schemes.
A total of 5 operation points distributed along the compressor characteristic were computed
on the two coarser grids, whereas only two operation points were computed with the finest
grid. Figure 2 shows a typical convergence history of the continuity equation residual and of
the non-dimensional mass flow rate on the finest mesh for RBC3, compared to that of the
standard Jameson scheme. For both schemes the residual drops about 4 orders of magnitude
in 10000 iterations. Note that RBC3 seems to detect some form of physical instability in the
shock/boundary layer interaction region, so that the residuals tend to stagnate around 104
after initial convergence. Time-accurate simulations are warranted in the future, to further
investigate this phenomenon.

Numerical solutions were post-treated in order to extract the overall performance parameters,
namely the average total pressure ratio, P, and the adiabatic efficiency 75, defined as:

y—1
P} 7
P P (Pt1> 1
ratio ) is = T
Ptl Ttl
t2

where P, and T} represent respectively the total pressure and temperature in the absolute refer-
ence frame, and the subscripts 1 and 2 stand for inlet and outlet of the computational domain,
respectively. Computed and experimental results for both quantities and displayed in Fig. 3.

RBC schemes tend to underestimate the pressure ratio and adiabatic efficiency in comparison
to measurements. Results progressively improve when refining the mesh, even if a complete
agreement with experimental results is not reached. Previous studies have shown the difficulty of
matching experimental data, due to multiple uncertainties in both flow models and experiments
(see e.g. Chima (2009)). For this reason, hereafter we focus the discussion on the behaviours of
different numerical schemes more than on comparisons with experimental data. An interesting
result is that for RBC2 and, even more clearly, for RBC3, results obtained on the medium and
fine grids are relatively close to each other (approximately to within 1.5%), which suggests that
these schemes are close to mesh convergence. The coarse grid solution is very far from the fine
mesh one, indicating that numerical errors are quickly reduced after the first grid refinement.
On the contrary, the numerical solution provided by Jameson’s scheme varies significantly with
mesh refinement: the pressure ratio is strongly over-estimated on the coarser grid (and the choke
mass flow under-estimated), becomes fortuitously close to experimental data after the first
mesh refinement, and tends to be underestimated on the finest grid. Differences between the
solutions obtained on the two last grids are quite significant, suggesting poor mesh convergence
of the numerical solution.

To investigate further the impact of numerical approximations on the computed rotor perfor-
mance, an in-detail analysis of the numerical flow fields is carried out for operating conditions
corresponding to 98% of the choke mass flow. Figure 4 provides an overall view of the computed
flow field provided by the RBC3 scheme on the finest grid. The flow field is characterised by a
bow shock upstream of the blade, as well as a passage shock leading to boundary layer separation.
A complex shock structure is also present in the tip clearance. Figure 5 shows iso-Mach contours
at the mid-plane computed on the finest grid with several schemes. Shock sharpness and size of
the separation bubble vary according to the scheme in use: the sharpest shock and the greatest
separation bubble are provided by RBC3, whereas Jameson’s scheme tends to smear shocks and
leads to a smaller separation bubble. Note also that the high-accurate scheme predicts a higher
maximum value of the Mach number in the computational field: precisely, maximum values of
1.907, 1.844, and 1.828, are obtained for RBC3, RBC2, and Jameson’s scheme, respectively.
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Differences among different schemes are more evident in Fig. 6, showing the nondimensional
pressure distribution along the blade span for the finer grid. RBC3 and RBC2 give quite sim-
ilar results, the shock at the suction side being captured slightly more sharply by RBC3. The
solution given by Jameson scheme exhibits a different shock location and a much more smeared
shock profile at the suction side, as well as an additional weak shock at the pressure side, around
15% of the chord: the different thickness and curvature of the bow shock upstream of the blade
predicted by this more dissipative scheme alters somewhat the pressure distribution downstream.

Figures 7 and 8 display the radial distributions of rotor performance at an axial station located
10.67 cm downstream of the blade leading edge. For this station, experimental measurements of
the radial distributions of total pressure ratio, total temperature ratio, and adiabatic efficiency
are available. As recommended in the AGARD Report 355 (1998), numerical solutions were
mass-weighted in the azimuthal direction. Fig. 7 illustrates grid convergence for the three
schemes under investigation; Fig. 8 compares the solutions of three schemes for the two finer
grids. Experimental data show a region of low total pressure below 40% span, called a ” pressure
deficit”. Most of the results previously shown in the litterature (AGARD Report 355 (1998);
Dunham and Meauzé (1998)) failed to predict this behaviour. Chima and Liou (2003) suggested
that the low total pressure is an intrinsic feature of the rotor that tends to be smeared out by
central-difference schemes used by many CFD codes. This is partly confirmed by the present
results: on the two coarsest grids, Jameson’s central-difference scheme smears the pressure
deficit, while over-predicting the total pressure in the upper part of the blade, leading to error
compensation on the span-averaged pressure ratio. On the contrary, the RBC schemes capture
the pressure deficit already on the medium grid. As previously observed for overall performance
indicators, numerical solutions provided by RBC schemes converge more quickly than Jameson’s
ones when the mesh is refined and predict well the pressure dimp already on the medium grid.
RBC3 performs slightly better than RBC2, both in terms of grid convergence and in terms of
agreement with experimental distributions. Similar remarks can be done on total temperature
distributions. A finer grid is required for the lower-order scheme to capture the right trends, the
absolute values being always less accurate than those of RBC schemes. Note that all schemes
over-predict the total temperature downstream of the rotor above 90% span. According to
AGARD Report 355 (1998); Chima (2009), this is also the case for many other CFD codes.
The discrepancy maybe either due to modelling errors in CFD solver or to unrecognized errors
in the experimental results. Note however that, at least for RBC schemes, agreement of the
solution tends to improve when the computational grid is refined, suggesting that tip leakage
flow features may be not resolved well enough on the present computational grids. Finally,
adiabatic efficiency profiles appear to be less sensitive than pressure and temperature profiles
to the numerical scheme in use. Nevertheless, the second-order central-difference scheme fails
again to capture experimental radial trends of the efficiency distribution on the two coarsest
grids.

To complete the discussion, the computational cost of RBC schemes is compared to the cost
of the baseline scheme. The present computations were run on a PC using X5660 Xeon exacore
processors with a clock frequency of 2.8Ghz. Computations run with the elsA code were paral-
lelized on two cores using MPI. With this configuration, the computational cost per iteration
and per point was of about 0.0125 sec using Jameson’s scheme. Global computational costs of
a Rotor 37 calculation are those required to achieve an almost converged mass flow. All of the
schemes achieve the required tolerance level within almost the same number of iterations (about
3000). RBC schemes are more expensive than Jameson’s scheme in terms of operation count:
precisely, the computational costs per iteration and per point of RBC2 and RBC3 are about
1.8 and 2.2 times greater, respectively. Nevertheless, RBC schemes are clearly more accurate,
since they provide almost grid-converged solutions using about 1/8 of the mesh cells required
by the baseline scheme. RBC3 is slightly more expensive than RBC2, mainly because of the
computation of weighting coefficients, but the extra cost is compensated by a somewhat better
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accuracy. It is concluded that, for this steady RANS case, using a well-designed, low dissipative
scheme has a stronger effect in terms of improved accuracy of the solution than increasing the
formal order of accuracy, so that satisfactory results can be obtained already for a RBC scheme
of 2nd-order accuracy. This conclusion is likely to change in favour of the 3rd-order scheme
for unsteady RANS and LES computations. Further research will focus on the application of
high-order RBC schemes to scale-resolving unsteady simulations.

4. Conclusions

Numerical simulations of the Rotor 37 test case are carried out at several operating conditions us-
ing RBC schemes of 2nd and 3rd-order accuracy. It is worthy stressing the novelty of computing
such challenging complex flow fields using an almost 3rd-order accurate scheme. Present results
prove, first of all, the feasibility of high-order methods for computing this kind of flows. Compar-
isons of numerical solutions predicted by RBC schemes for increasing degrees of mesh resolution
with those of the baseline solver in elsA, namely, Jameson’s scheme, show that RBC schemes
provide almost grid converged results on computational grids that are 8 times coarser. Moreover,
computational results are in reasonably good agreement with experimental data, showing that
the use of accurate schemes and/or fine enough meshes improves solution predictivity even using
a relatively simple turbulence model (here, Spalart—Allmaras).

Thanks to the use of coarser grids, RBC schemes reduce the computational cost required to
achieve mesh-converged solutions by at least a factor between 2 and 4 compared to standard
methods, even if their CPU cost per iteration and per point is 1.8 to 2.2 times higher, according
to the chosen order of accuracy. Specifically, if only steady computations are required, RBC2
provides a good compromise between accuracy, memory loading, robustness, and computational
cost. On the other hand, two-dimensional unsteady computations (Michel et al. (2011)) of tur-
bomachinery flows show that at least 3rd-order accuracy is required for unsteady computations.
Numerical applications of RBC3 to unsteady 3D flows are warranted in the near future.
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Figure 3.: Rotor 37 performance maps for several schemes and grid resolutions. Left: pressure
ratio; right: isentropic efficiency.
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Figure 4.: Overall view of the flow field (98% choke conditions). Mach number distribution at
midplane, and stream ribbons colored by the Mach number. RBC3 scheme.

RBC3 RBC2 Jameson

Figure 5.: Mach number distribution at compressor’s midplane for several schemes. Fine grid
computation.
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Figure 6.: Non-dimensional pressure distribution along the midspan section. Comparison of three
schemes, fine grid.
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Figure 8.: Radial performance distributions for several schemes and grid resolutions. Comparisons
among different schemes on the medium (left) and finer (right) grids.
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