Science Arts & Métiers (SAM) is an open access repository that collects the work of Arts et Métiers ParisTech researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: http://hdl.handle.net/10985/10174

To cite this version:

Eric MONTEIRO, Morgan DAL, Philippe LORONG - Solving Stefan problem through C-NEM and level-set approach - 2015

Any correspondence concerning this service should be sent to the repository Administrator: archiveouverte@ensam.eu
Solving Stefan problem through C-NEM and level-set approach

September 9-11, 2015
X-DMS 2015 Ferrara, Italy

Eric MONTEIRO, Morgan DAL, Philippe LORONG

Arts et Metiers ParisTech, PIMM (UMR CNRS 8006), 75013 Paris
Introduction

Final goal of the study

Develop numerical time domain approach able to simulate thermo-mechanical phenomena in Finite Transformations:

- Cutting/blanking processes in 3D
 - Matter splitting encountered in forming processes
- Laser drilling/cutting
 - Multi-phases problem with moving interfaces across the matter
- Research tool in order to be able to test new approaches and thermomechanical models
Introduction

Final goal of the study

Develop numerical time domain approach able to simulate thermo-mechanical phenomena in Finite Transformations:

- Cutting/blanking processes in 3D
- Matter splitting encountered in forming processes
- Laser drilling/cutting
- Multi-phases problem with moving interfaces across the matter
- **Research tool** in order to be able to test new approaches and thermomechanical models

The approach must handle:

- Large strains
- Contact
- Interfaces and discontinuities
Introduction

Large strains

- FEM: induced **mesh distortions** are conducting to frequent re-meshing and fields projections
 - need a very efficient mesher \(\rightarrow\) lack of robustness in 3D

- **Mesh Free**: only the distribution and number of nodes are to be managed
 - OK but need to simply take into account boundary conditions

Solving Stefan problem through C-NEM and level-set approach
Introduction

Large strains

- FEM: induced **mesh distortions** are conducting to frequent re-meshing and fields projections
 - need a very efficient mesher → lack of robustness in 3D

- **Mesh Free**: only the distribution and number of nodes are to be managed
 - OK but need to simply take into account boundary conditions

Mesh Free

We have choose to use a Natural Neighbor interpolant based mesh free approach ⇒ nodal interpolation

Existing methods:

- α-NEM1: no geometrical description of the boundaries but boundaries must be quite regular
- C-Nem$^2, 3$: a geometrical model is needed for the boundaries but domain can be highly non convex

3. L. Illoul, Comp. and Struc., 2011
Introducing the problem of the Stefan problem through C-NEM and level-set approach.

Interfaces and discontinuities

Example of blanking process: (C-Nem simulation\(^1\))

References

Introduction

Interfaces and discontinuities

Example of blanking process: (C-Nem simulation1)

1 L. Illoul, http://sn-m2p.cnrs.fr

Interfaces modeling

- Full geometrical model: in 3D the shape evolution of the interface need a complex (and robust) surface mesher
 - Discontinuities: direct with duplication of the variables on nodes belonging to the interface2
- **Level-set**: easy but the description is linked to the nodes distribution
 - Discontinuities: X-FEM framework → **X-NEM**3

2 J. Yvonnet, Int. J. Therm., 2005
3 N. Sukumar, U.S. National Congress on Comp. Mech., 2001
Introduction

Goals of the presentation

Present a numerical method to solve problems involving discontinuities on moving internal boundaries with:

- a C-Nem approach for the interpolation (based on the natural neighbours interpolation)
- a level-set technique to represent the interface
- a local enrichment through the partition of unity concept

First results in 2D for the Stefan problem are presented
Solving Stefan problem through C-NEM and level-set approach

Outline

1. Introduction
2. Few words on the C-Nem
 - Natural Neighbour
 - Non-convex domains
 - Properties
3. Coupling C-Nem with a level-set approach
4. Stefan problem
5. First results
6. Conclusion
Solving Stefan problem through C-NEM and level-set approach

Few words on the C-Nem

C-Nem use a Ritz(-Galerkin) approach

\[
\mathbf{u}^h(x) = \sum_{i=1}^{n} N_i(x) \mathbf{u}_i, \quad \forall x \in \Omega
\]

where \(N_i(x)\) are **Natural Neighbour (NN) shape functions**: one shape function per node \(i\).

Natural Neighbour shape function

Based on:
- Voronoï diagram ⇔ Delaunay tessellation
- Systematic geometric constructions (for a given set of nodes)

\[
N_i(x) = \frac{\text{Area}(afghe)}{\text{Area}(abcde)}
\]

\(x\) inside \(\Omega\)

\(x\) on the boundary of \(\Omega\)
Few words on the C-Nem

Natural Neighbour (NN) shape function – Non-convex domains

Voronoï diagram with NN
Constrained Voronoï diagram with NN
The constrained Voronov diagram (Delaunay tessellation) use a visibility criterion. The Delaunay tessellation is **constrained** to respect the tessellation of \(\partial \Omega \)

NN supports
Constrained NN supports
Few words on the C-Nem

Natural Neighbour (NN) shape function – Non-convex domains

Voronoï diagram with NN

The constrained Voronoï diagram (Delaunay tessellation) use a visibility criterion.
The Delaunay tessellation is constrained to respect the tessellation of $\partial \Omega$

Constrained Voronoï diagram with NN

NN supports

Constrained NN supports

C-Nem: Constrained Natural Element Method

C-NEM use the constrained NN shape functions
Few words on the C-Nem

Properties of (constrained) NN interpolant

- Delta Kronecker:
 \[N_i(x_j) = \delta_{ij} \]

- Positivity:
 \[0 \leq N_i(x) \leq 0 \]

- Partition of unity:
 \[\sum_{i=1}^{n} N_i(x) = 1 \]

- Local coordinate property:
 \[x = \sum_{i=1}^{n} N_i(x) x_i \]
 \[\Rightarrow \text{exact interpolation of linear fields} \]
 \[\Rightarrow \text{reproduction of large solid motions} \]

Continuity

Natural neighbor shape functions are \(C^\infty \) at any point except:

- at the nodes: \(C^0 \)
- on the boundary of the Delaunay circles (spheres in 3D): \(C^1 \)
Outline

1. Introduction
2. Few words on the C-Nem
3. Coupling C-Nem with a level-set approach
 - Main aspects
 - Enrichment
 - Enrichment function
 - Quadrature
4. Stefan problem
5. First results
6. Conclusion
Coupling C-Nem with a level-set approach

Main aspects

We propose to use a X-FEM like strategy by enriching the C-Nem approximation space through the **partition of unity technique**.

As for the X-FEM, the **location of the discontinuity interface** is defined by a **level-set function**. This latter being defined by the nodal values of the level-set function with the **C-Nem approximation**.

We need to define:

- the adequate enrichment function (depending on the discontinuity), based on the level-set (distance) function
- the selection of the nodes subjected to enrichment (near the interface)
- the quadrature rules for the weak forms
Coupling C-Nem with a level-set approach

Local enrichment of the Constrained NN interpolant

\[T^h(x, t) = \sum_i N_i(x) a_i(t) + \sum_{j \in I(t)} N_j(x) \psi(x, t) b_j(t) \]

- \(\psi(x, t) \) is the enrichment function depending on the interface position
- \(I(t) \) is the set of the nodes subjected to enrichment
- \(N_i(x) \) are the Constrained NN shape function verifying the partition of unity. If the geometry of the domain do not evolve, these shape functions do not depend on time.

Selection of the nodes subjected to enrichment

In order to define the set \(I(t) \) we use the constrained Delaunay tessellation.

Constrain Delaunay Tesselation (black) + Discontinuity interface (green)

Enriched nodes selection (in red)
Coupling C-Nem with a level-set approach

Enrichment function ψ

Here we have chosen an enrichment function, proposed by Moes et al.\(^1\), in order to handle weak discontinuity (gradient discontinuity):

$$
\psi(x, t) = \sum_{j \in I(t)} N_j(x) |\Phi(x_j, t)| - \sum_j N_j(x) \Phi(x_j, t)
$$

where $\Phi(x_j, t)$ is the level-set (distance) function.

Representation of the level-set and enrichment functions

$\Phi(x)$: Level-set contours

$\Phi(x)$: Level-set contours in 3D

$\psi(x)$: Schematic representation
Coupling C-Nem with a level-set approach

Quadrature

- For the integration of the weak forms we use the constrained Delaunay tessellation.
- As for the X-Fem, the triangles (tetrahedrons in 3D) intersecting the interface, are re-meshed in order to be compatible with the interface and to improve the quadrature.

Example of quadrature points distribution

Initial Delaunay mesh

Refined Delaunay mesh – Quadrature points
Solving Stefan problem through C-NEM and level-set approach

Outline

1. Introduction
2. Few words on the C-Nem
3. Coupling C-Nem with a level-set approach
4. Stefan problem
 - Strong form
 - Weak form
 - Time discretization
 - Matrix Form
 - Interface convection
 - Pseudo-code
5. First results
6. Conclusion
Solving Stefan problem through C-NEM and level-set approach

Stefan problem

Heat equation:
\[\rho \frac{\partial}{\partial t} (c_1 T) = \nabla \cdot (k_1 \nabla T) \quad \text{in } \Omega_1(t); \quad \rho \frac{\partial}{\partial t} (c_2 T) = \nabla \cdot (k_2 \nabla T) \quad \text{in } \Omega_2(t) \]

\(c_i, k_i \): heat capacities, thermal conductivities
\(\rho = \rho_1 = \rho_2 \): density

Initial and boundary conditions:
\[
\begin{align*}
T(x, t=0) &= T_0 & \forall x \in \Omega \\
T(x, t) &= \overline{T}(x, t) & \forall x \in \Gamma_1, \forall i \in [0, t_{\text{max}}] \\
-k_i \nabla T(x, t) \cdot \mathbf{n}_{12} &= \overline{q}(x, t) & \forall x \in \Gamma_1, \forall i \in [0, t_{\text{max}}]
\end{align*}
\]

Interface velocity: depends on \(L \) the latent heat of fusion
\[
\mathbf{V}(x \in \Gamma_I(t)) = \frac{[q]}{L} \mathbf{n}_{12}(x) \quad \text{where} \quad [q] = (k_1 \nabla T|_{\Gamma_{12}^-} - k_2 \nabla T|_{\Gamma_{12}^+}) \cdot \mathbf{n}_{12}
\]

Constraint prescribed on the interface \(\Gamma_I(t) \):
\[T(x, t) = T_m \quad \forall x \in \Gamma_I(t); \quad T_m : \text{melting temperature} \]
Stefan problem

Weak form

Find \(T \in H^1(\Omega) \) with \(T = \bar{T} \) on \(\Gamma_1 \) such that

\[
\int_{\Omega} \rho c \frac{\partial T}{\partial t} \delta T \, d\Omega + \int_{\Omega} k \nabla T \cdot \nabla \delta T \, d\Omega = \int_{\Gamma_I} \alpha (T - T_m) \delta T \, d\Gamma + \int_{\Gamma_I} [\mathbf{q} \cdot \mathbf{n}_{12}] \delta T \, d\Gamma
\]

(Simplify form : \(\bar{q}(t) = 0 \))

Time discretization using implicit scheme 1

The implicit backward Euler integration scheme between \(t^{n-1} \) and \(t^n \) gives:

\[
\int_{\Omega} \rho c \frac{T^n - T^{n-1}}{dt} \delta T^n \, d\Omega + \int_{\Omega} k \nabla T^n \cdot \nabla \delta T^n \, d\Omega = \int_{\Gamma_I} \alpha (T^n - T_m) \delta T^n \, d\Gamma + \int_{\Gamma_I} [[\mathbf{q}^n \cdot \mathbf{n}_{12}]] \delta T^n \, d\Gamma
\]
Stefan problem

Time discretization using implicit scheme 1

\[
\int_{\Omega} \rho c \frac{T^n - T^{n-1}}{dt} \delta T^n \, d\Omega + \int_{\Omega} k \nabla T^n \cdot \nabla \delta T^n \, d\Omega = \int_{\Gamma_I} \alpha (T^n - T_m) \delta T^n \, d\Gamma \\
+ \int_{\Gamma_I} [[q^n \cdot n_{12}]] \delta T^n \, d\Gamma
\]

Time discretization using implicit scheme 2

\[
\int_{\Omega} \rho c T^n \delta T^n \, d\Omega + dt \int_{\Omega} k \nabla T^n \cdot \nabla \delta T^n \, d\Omega = \int_{\Omega} \rho c T^{n-1} \delta T^n \, d\Omega \\
+ dt \int_{\Gamma_I} \alpha (T^n - T_m) \delta T^n \, d\Gamma + dt \int_{\Gamma_I} (k_1 - k_2) (\nabla T^n \cdot n_{12}) \delta T^n \, d\Gamma
\]
Solving Stefan problem through C-NEM and level-set approach

Stefan problem

Time discretization using implicit scheme 2

\[
\int_{\Omega} \rho c T^n \delta T^n \, d\Omega + dt \int_{\Omega} k \nabla T^n \cdot \nabla \delta T^n \, d\Omega = \int_{\Omega} \rho c T^{n-1} \delta T^n \, d\Omega \\
+ dt \int_{\Gamma_I} \alpha (T^n - T_m) \delta T^n \, d\Gamma + dt \int_{\Gamma_I} (k_1 - k_2) (\nabla T^n \cdot n_{12}^n) \delta T^n \, d\Gamma
\]

Matrix Form

\[
(C + dtK) T^n = F
\]

with

\[
C = \int_{\Omega} \rho c N^{nT} N^n \, d\Omega
\]

\[
K = \int_{\Omega} k B^{nT} B^n \, d\Omega - \int_{\Gamma_I} \alpha N^{nT} N^n \, d\Gamma + \int_{\Gamma_I} (k_2 - k_1) N^{nT} (B^n \cdot n_{12}^n) \, d\Gamma
\]

\[
F = \int_{\Omega} \rho c N^{nT} \left(N^{n-1} T^{n-1} \right) \, d\Omega + dt \int_{\Gamma_I} (\alpha T_m) N^{nT} \, d\Gamma
\]
Solving Stefan problem through C-NEM and level-set approach

Stefan problem

Interface convection

Velocity extension

\[\text{sign}(\Phi) \nabla F \cdot \nabla \Phi = 0 \]

with \(F = \mathbf{V} \cdot \mathbf{n}_{12} \) on \(\Gamma_I \)

Level-set updating

\[\frac{\partial \Phi}{\partial t} + \mathbf{V} \cdot \nabla \Phi = 0 \]

Solving Stefan problem through C-NEM and level-set approach

Stefan problem

Pseudo-code

Let T^{n-1} and Φ^{n-1} be known.

- Compute the velocity of the interface V^{n-1} on Γ_I
 \[V^{n-1} = \frac{[q]}{L} n_{12}^{n-1} \]

- Extend this velocity to the whole domain Ω solving
 \[\text{sign}(\Phi) \nabla F \cdot \nabla \Phi = 0 \quad \text{with} \quad F = V^{n-1} \cdot n_{12} \text{ on } \Gamma_I \]

- Determine Φ^n by updating the level-set function through
 \[\frac{\partial \Phi}{\partial t} + F |\nabla \Phi| = 0 \]

- Localize integration points by dividing the elements cut by Γ_I into sub-elements matching Γ_I using Φ^n only

- Build matrices C & K and vector F

- Compute T^n by solving the heat equation
 \[(C + dtK) T^n = F \]
Outline

1. Introduction
2. Few words on the C-Nem
3. Coupling C-Nem with a level-set approach
4. Stefan problem
5. First results
 - Interface motion
 - Temperature errors
6. Conclusion
First results

Motion on the interface across the mesh

Regular grid

Irregular grid
First results

Motion of the interface at two Y levels

Level $Y = 0.56$

Level $Y = 0.78$
First results

Global and local errors on temperature

Global error

\[e^2(t) = \int_{\Omega(t)} \frac{[T_{\text{Num}}(x, t) - T_{\text{Sol}}(x, t)]^2}{[T_{\text{Sol}}(x, t)]^2} \, dS \]

Local error

\[e(t) = \sup_{x \in \Omega} \frac{|T_{\text{Num}}(x, t) - T_{\text{Sol}}(x, t)|}{|T_{\text{right}} - T_{\text{left}}|} \]
Outline

1. Introduction
2. Few words on the C-Nem
3. Coupling C-Nem with a level-set approach
4. Stefan problem
5. First results
6. Conclusion
Conclusion

Weak form

- First results are encouraging
- Partition of unity technique seems to work as well with the C-Nem than with the FEM
- It is a first approach in 2D, investigation must be done on more complex geometries and in 3D
- Main errors are observed in the "enriched zones" where partition of unity not exactly respected are observed (error $\approx 10^{-2}$)

Work still in progress ...
Thanks for your attention

Any questions?

E. Monteiro, M. Dal, P. Lorong

Arts & Métiers ParisTech - Campus of Paris
PIMM : Laboratory on Processes and Engineering in Mechanics and Materials
151 boulevard de l’Hopiral, 75 013 Paris
eric.monteiro@ensam.eu