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a b s t r a c t

Optimization of manufacturing processes or structures involves the optimal choice of
many parameters (process parameters, material parameters or geometrical parameters).
Usual strategies proceed by defining a trial choice of those parameters and then solving
the resulting model. Then, an appropriate cost function is evaluated and its optimality
checked. While the optimum is not reached, the process parameters should be updated
by using an appropriate optimization procedure, and then the model must be solved again
for the updated process parameters. Thus, a direct numerical solution is needed for each
choice of the process parameters, with the subsequent impact on the computing time. In
this work we focus on shape optimization that involves the appropriate choice of some
parameters defining the problem geometry. The main objective of this work is to describe
an original approach for computing an off-line parametric solution. That is, a solution able
to include information for different parameter values and also allowing to compute readily
the sensitivities. The curse of dimensionality is circumvented by invoking the Proper Gen-
eralized Decomposition (PGD) introduced in former works, which is applied here to com-
pute geometrically parametrized solutions.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The main objective of this work is to propose an original methodological approach to perform efficient numerical mod-
eling and optimization. More specifically, the aim is to obtain approximations of the solution for models with parametrized
geometries. These parametric approximations could then be employed for performing efficient shape optimization for
example.

Optimization problems rely usually on iterative approaches. Optimal parameters (for instance, geometrical parameters
describing the family of possible shapes) are obtained as extrema of a cost function. In general, for computational mechanics
problems and, more particularly, in shape optimization, the evaluation of the cost function implies the resolution of a bound-
ary value problem (BVP). Therefore, at each iteration, given a set of trial parameters, the feasibility and the optimality (value
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of the cost function) require the resolution of a non trivial problem. Thus, until convergence a large number of, possibly
costly, problems must be solved.

There are also a large variety of techniques to determine the updates on the trial parameters. If available, the derivatives
of the cost function with respect to the design parameters are an important asset to improve the performance of conver-
gence. The evaluation of these derivatives is, in general, not an easy task. They require to evaluate sensitivities of the solution
of the BVP with respect to the design parameters and, although many techniques are available, this can have a computational
cost non-negligible. In some cases the cost is of the order of the resolution of the BVP or even higher when the derivatives are
evaluated using finite difference techniques, for instance.

The focus here is not to discuss particular optimization strategies, but pointing out that standard optimization strategies
need numerous direct solutions of the problem, at least, one solution for each tentative geometry. The solution of such mod-
els is a tricky task that demands important computational resources and usually implies extremely large computing times,
although good examples of commercial software exist nowadays.

Other works in the field such as [1–7] present efficient developments for shape and/or topology optimization techniques.
Particularly noteworthy is the work covered in [3,4] where in order to characterize the topology of the domain, the design
variables define a field (a function) which describes the geometry.

In this paper a radically different approach is proposed and, to the authors’ knowledge, never previously explored. The
main contribution of the suggested approach is to determine the solution of the BVP for any value of the unknown geomet-
rical parameters (i.e. any value of the design variables). To this end, the design variables are viewed as new coordinates of the
model and a separated representation is used to describe this general solution. In fact, coordinates, or space dimensions, rep-
resent the (non-necessarily physical) locations at which the solution is to be represented. Thus, strictly speaking, one could
compute the solution of the problem for any value of the unknown parameters (in a bounded interval). This transforms the
parameters in new dimensions of the space in which the model is defined.

How to determine this general function for any value of the geometrical parameters is discussed later. Note however, that
determining this general function is done only once. Then, given its analytical expression (as a separated representation)
determining the solution of the BVP for any set of trial design parameters is a simple post-process (very fast computation).
Moreover, determining the sensibility of the solution of the BVP to any design parameter (geometry parameter) is also easy
and fast because of the separated representation. The shape optimization consists then into the evaluation of an objective
function (and, probably, some restrictions). Note that such an evaluation is now also very fast and efficient since the solution
of the BVP is known for any design parameter and thus does not require to solve the BVP. Moreover, the general solution of
the BVP is independent of the particular objective function.

To illustrate these ideas, consider a simple model, viz. the steady heat equation defined in the domain sketched in Fig. 1,
whose parametric space reduces to the horizontal and vertical displacement of the upper right corner, l1 and l2. The tra-
ditional optimization procedures based on the minimization of a cost function Costðl1;l2Þ can be summarized as follows:

� Until a minimum of Costðl1;l2Þ is reached, proceed to:
1. Compute the unknown field related to the trial choice of the geometry, i.e. uðx;l1;l2Þ.
2. Compute the cost function Costðl1;l2Þ from the just calculated thermal field.
3. Check the optimality: while the optimum is not reached, update the geometry, i.e. modify l1 and l2, by using an

appropriate strategy and go back to step 1 to solve again the model in the newly updated geometry.

The methodology proposed here is substantially different. It is as follows:

� Determine a general solution of the thermal field for any possible geometry (here the location of the upper-right corner
plays the same role that the space coordinates), the problem becoming multidimensional. This general solution is written
as a sum of separable functions.

Fig. 1. Parametric domain.
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� Until a minimum of Costðl1;l2Þ is reached, proceed to:
1. Particularize the general parametric solution at the considered values of the geometrical parameters (very fast).
2. Compute the cost function Costðl1;l2Þ.
3. Check the optimality: while the optimum is not reached, update the geometry by using an appropriate strategy (if

sensitivities are needed use the known separated expression of the general solution to efficiently evaluate derivatives
of the thermal field with respect to design parameters) and go back to step 1 to particularize again the parametric
solution.

Thus, in the methodology proposed here, the model is solved only once and then it is particularized for any choice of the
geometry. The price to pay is to solve a multidimensional thermal model that now has as coordinates the usual physical
space x and all the geometrical parameters, in the present example the two extra-coordinates l1 and l2 defining the location
of the upper-right corner.

Obviously, the solution of the resulting multidimensional model is a tricky task if one considers a standard mesh based
discretization strategy because the number of degrees of freedom increases exponentially with the dimensionality of the
model. Thus, for a hypercubic domain, the number of degrees of freedom scales with the number of nodes along each spatial
direction to the power of the number of dimensions. For instance, in 2D if 100 nodes are used along each direction with a
single degree of freedom per node, the resulting number of degrees of freedom is 1002. In 3D, the number of degrees of free-
dom rises to 1003 and so on. This exponential increase of the number of degrees of freedom can be literally out of reach for
todays computers even if the number of dimensions increases only moderately. This phenomenon is known as curse of
dimensionality. Although efficient techniques exist for moderate number of spatial dimensions, such as sparse grid methods,
they fail when the dimensionality increases.

To circumvent this serious difficulty, the Proper Generalized Decompositions (PGD) is used. It considers a separated rep-
resentation of the unknown field and was originally introduced in [8,9] for addressing multidimensional steady state and
transient models, respectively. The interested reader can refer to [10,11] and the references therein for a complete review
of PGD techniques. PGD techniques construct an approximation of the solution by means of a sequence of products of sep-
arable functions, circumventing the curse of dimensionality. These functions are determined ‘‘on the fly’’, as the method pro-
ceeds, with no initial assumption on their structure.

As can be readily noticed, the potential of the technique for inverse identification, optimization, among others, seems to
be huge. This approach has been applied to optimization of structures and processes as well as for identification and simu-
lation based control [12–16]. An alternative approach combining PGD and an efficient exploration of the parametric domain
was considered in [17] within the non-linear-non-incremental LATIN framework [18–20]. Other related works in the field
include [21,19]. On a related basis, [22] includes the management of high-dimensional experimental data in a PGD frame-
work in order to construct surface response approaches to a given problem.

In Section 2 the basic ideas to construct a PGD separated representation, are revisited. In Section 3 the procedure and dif-
ficulties to include the geometrical parameters as extra-coordinates, are described for a model problem. This methodology is
generalized and formalized in Section 4. Finally, Section 5 presents some numerical examples for illustrating the potential-
ities of the proposed approach.

2. Rationale of Proper Generalized Decomposition in a generic linear parametric model

Suppose the standard elliptic problem

�r � Kru ¼ f in X;

n � Kru ¼ t on C;

u ¼ 0 on @X n C;

8>>><
>>>:

ð1Þ

where the source term and the Neumann conditions are assumed constant to simplify the presentation, and the conductivity
(diffusivity/permeability) matrix Kðx;lÞ has a spatial variation characterized by parameters l 2 Rm. More precisely,
l 2 I1 � I2 � � � � � Im where Ij is the range of variation of parameter lj.

A major contribution of the PGD approach is to view these parameters l characterizing conductivity K as new coordi-
nates. Thus, instead of solving an excessively large number of thermal models for each different discrete value of these
parameters, the objective is to solve at once a more general problem with l as extra coordinates. The price to pay being
an increase of the problem dimensionality, since now l play the role of new coordinates in the model. However, as the com-
plexity of the PGD scales only linearly (and not exponentially) with the space dimension, consideration of l as extra coor-
dinates does not preclude to efficiently obtain an accurate solution.

The weak problem equivalent to (1) is obtained using a weighted residual argument, namely, find u for all du in the se-
lected appropriate functional space such that

Aðu; duÞ ¼ LðduÞ ð2aÞ
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with

Aðu; duÞ :¼
Z

I1

Z
I2

� � �
Z

Im

ðKru;rduÞXdl1dl2 . . . dlm; ð2bÞ

LðduÞ :¼
Z

I1

Z
I2

� � �
Z

Im

ðf ; duÞX þ ht; duiC
� �

dl1dl2 . . . dlm; ð2cÞ

where ðu;vÞX and hu;viC denote, respectively, the L2 scalar product of functions u and v in X and its traces over C.
The PGD approach assumes, see [23], that the solution of (2) can be approximated by a rank-n separable approximation of

the solution, uðx;lÞ, namely,

uðx;lÞ � unðx;lÞ ¼
Xn

s¼1

vsðxÞ
Ym
j¼1

xs
j ðljÞ;

¼ un�1ðx;lÞ þ vðxÞ
Ym
j¼1

xjðljÞ;
ð3Þ

where v and v s 2 H1
CD

while xj and xs
j 2 L

2ðIjÞ for j ¼ 1; . . . ;m and s ¼ 1; . . . ;n, with

H1
CD

:¼ fv 2 H1ðXÞ : v ¼ 0 on CDg: ð4Þ

Note that each xs
j can be normalized in the natural norm of its space.

Assume un�1ðx;lÞ already known, then, the n-enrichment requires the evaluation of v and xj for j ¼ 1; . . . ;m. Note that
PGD is an a priori reduced order model where the separable functions are evaluated from the weak problem. The final num-
ber of terms n for convergence requires an error estimate, see, for instance, [24]. In practice, convergence is fast enough in
elliptic problems to avoid the need for implementing an error estimator.

After substitution of (3) into (2), the weak problem becomes

A v
Ym
j¼1

xj; du

 !
¼ LðduÞ � Aðun�1; duÞ; ð5aÞ

with the test functions are also separated as

du ¼ dv
Ym
j¼1

xj þ
Xm

k¼1

v dxk

Ym
j¼1
j–k

xj: ð5bÞ

Note that (5) defines a non-linear problem that must be solved by means of a suitable iterative scheme. Newton’s method is a
straightforward alternative, see, for instance, [8,9]. However, simpler linearization strategies can also be applied, see [11].
The simplest one is an alternating direction, fixed-point algorithm, which was found remarkably robust in the present con-
text. Each iteration consists of as many stages as separated functions, mþ 1 in this case, that are repeated until convergence.

For simplicity in the exposition suppose m ¼ 2. Thus, Eq. (5b) becomes

du ¼ dv x1 x2 þ v dx1 x2 þ v x1 dx2;

and, consequently, Eq. (5a) is transformed in the following three stages

1. Find v 2 H1CD for all dv 2 H1
CD

(x1 and x2 assumed known) such that Aðv x1 x2; dv x1 x2Þ
¼ Lðdv x1 x2Þ � Aðun�1; dv x1 x2Þ.

2. Find x1 2 L2ðI1Þ for all dx1 2 L2ðI1Þ (v and x2 assumed known) such that Aðv x1 x2;v dx1 x2Þ ¼ Lðv dx1 x2Þ
�Aðun�1;v dx1 x2Þ.

3. Find x2 2 L2ðI2Þ for all dx2 2 L2ðI2Þ (v and x1 assumed known) such that Aðv x1 x2;v x1 dx2Þ ¼ Lðv x1 dx2Þ
�Aðun�1;v x1 dx2Þ.

These three stages are iterated until convergence. The first stage is at most 3D (size of the spatial dimension), and all other
stages, for each parameter, are 1D. Moreover, it is interesting to note, see Eq. (2b), that each equation for function xj asso-
ciated to parameter lj is algebraic (there are no derivatives with respect to the parameters lj).

In summary, for each enrichment step of the separable approximation, see Eq. (3), this nonlinear three-stage procedure is
required. In general, the number of iterations for each enrichment does not exceed ten. Although the exact n-value (rank of
the approximation) needed to accurately approximate the solution depends on the solution separability and regularity,
numerical evidence in elliptic problems reveals that n ranges between a few tens and a few hundreds. Thus, at most, the
complexity of the PGD procedure is a few hundreds spatial problems (the cost of each 1D algebraic problem being negligible
compared to the 3D one). This is, in general, orders of magnitude less expensive that the full dimensional problem ð3þmÞ
dimensions or solving each spatial (3D) problem for a given set of parameters. Note that in the previous example, with m ¼ 2,
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sampling for ten values of l1 and l2 is already equivalent to a hundred 3D problems. Clearly, the CPU time savings by apply-
ing the PGD can be of several orders of magnitude (see [9]).

Finally, it is important to note that if the structure of the operator Að�; �Þ is separable, as it is the case many practical exam-
ples, see [11], each stage in of the nonlinear process can be drastically simplified.

3. Model problem introducing geometrical parameters as extra-coordinates

This section presents in a simple problem the inherent difficulties associated to the use parameters modifying the geom-
etry. It also illustrates for this elementary problem depicted in Fig. 1 the proposed solution. The model problem described in
(1) is further simplified with K as the identity matrix and C ¼ ;, namely

�r � ru ¼ f in XðlÞ � R2;

u ¼ 0 on CDðlÞ :¼ @XðlÞ;

(
ð6Þ

where it is explicitly indicated the dependence of the computational domain and its boundary in the parameters
l 2 ½�a; a� � ½�a; a� � R2, with a < 1, in fact, in the example below a ¼ 0:7. Thus, the weak problem is a particularization
of (2), whose solution in the proper finite dimensional spaces gives an approximation of the general solution uðx;lÞ where
l are treated as extra-coordinates.

In order to solve the problem using l as extra-coordinates a mapping relating the spatial domain XðlÞ to a reference one
Xn is required. Note that while the mapping is obviously dependent on l, Xn is independent on these parameters. In fact,
XðlÞ is the image of Xn for a given mapping Ml, namely

XðlÞ :¼MlðXnÞ ¼ fx 2 R2 : x ¼MlðnÞ; 8n 2 Xng:

In what follows a strategy to define a convenient mapping is proposed. In any case, this mapping allows writing the weak
problem (2) over the reference domain with no dependence on l, namely

Aðu; duÞ ¼ LðduÞ ð7aÞ

with

Aðu; duÞ :¼
Z

I1

Z
I2

� � �
Z

Im

ðJ�1rnu; J�1rndu det JÞXn
dl1dl2 . . . dlm; ð7bÞ

LðduÞ :¼
Z

I1

Z
I2

� � �
Z

Im

ðf ; du det JÞXn
dl1dl2 . . . dlm; ð7cÞ

where J ¼ ½@x=@n� is the Jacobian matrix of the mapping and det J its determinant, white rn is the gradient in reference
coordinates.

Remark 1. Note the similarity between (7b) and (2b) with the following definition of K ¼ det J ½J�T J�1�.

3.1. A first tentative geometrical transformation

In order to explicit the dependence of the model on both geometrical parameters, consider a first tentative geometrical
transformation from the parameter space n 2�0;1½��0;1½ to the physical spatial domain x 2 XðlÞ:

x ¼MlðnÞ :¼ nþ 1
2

nT 0 1
1 0

� �
n

� �
l;

which entails a linear Jacobian matrix

J ¼ @x
@n

� �
¼

1 0
0 1

� �
þ

0 1
1 0

� �
lTn ¼

1þ n2l1 n2l2

n1l1 1þ n1l2

� �
:

The determinant of J and its inverse are respectively,

det J ¼ 1þ nT 0 1
1 0

� �
l;

J�1 ¼ @n

@x

� �
¼ 1

det J
1þ n1l2 �n2l2

�n1l1 1þ n2l1

� �
:

Replacing these definitions into (7) allows to apply the PGD methodology developed in Section 2. It is important to note that
with this mapping most of the terms in (7) can be expressed in a separated form, implying a finite sum of products of func-
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tions of n, functions of l1 and functions of l2. However, the inverse of the Jacobian, i.e. J�1 see (7b), introduces det J in the
denominator. This is a key issue because: (i) the expression of the inverse of a separated function in a separated form can
involve many terms, and (ii) in order to build-up such separated representation

1
det J

�
XN

i¼1

Jni ðnÞ J
l1
i ðl1Þ J

l2
i ðl2Þ

a high-order singular value decomposition (HOSVD) is required. In a multidimensional space involving many extra-coordi-
nates, the implementation of HOSVD becomes delicate and in any case non optimal.

Remark 2 (Small perturbations). The particular case of small perturbations allows for a separated representation of the
inverse of the Jacobian with a reduced number of terms. Only for the assumption of small perturbation a general mapping
induces a weak problem, see (7), where a PGD methodology produces approximations with a reasonable number of terms,
see [5]. In this work, however, general perturbations are considered and consequently more efficient transformations are
proposed.

3.2. Looking for simpler transformations

To facilitate a separate representation of the inverse of det J even in the presence of large perturbations, an alternative
mapping is proposed. As in the previous section, the same quadrilateral domain depicted in Fig. 1 is studied. And, again,
the unit square is distorted perturbing the position of the upper left corner with parameters l ¼ ðl1;l2Þ

T . That is, the coor-
dinates of the four vertices Pi are xi, for i ¼ 1; . . . ;4 defined as

x1 ¼ ð0;0ÞT ;
x2 ¼ ð1;0ÞT ;
x3 ¼ ð1þ l1;1þ l2Þ

T
;

x4 ¼ ð0;1ÞT :

8>>>><
>>>>:

ð8Þ

The new mapping requires a partition of the original geometry in non-overlapping triangles. In this case, two triangles X1

and X2 are defined; the first one is characterized by points ðP1;P3; P4Þ and the second one by ðP1;P2;P3Þ.
The reference triangle T is defined in the reference domain of coordinates n and its vertices are T1 ¼ ð0;0Þ, T2 ¼ ð1;0Þ, and

T3 ¼ ð0;1Þ. The mapping of the parametric spatial domain XðlÞ ¼ X1ðlÞ [X2ðlÞ into a reference configuration independent
of l is described by two geometrical transformations T ! X1 and T ! X2. That is,

XðlÞ ¼
[2
i¼1

XiðlÞ with XiðlÞ ¼ Mi
lðT Þ ¼ fx 2 R2 : x ¼Mi

lðnÞ; 8n 2 T g for i ¼ 1;2:

In this case, the mapping for each element follows the well-known finite element strategy for a linear triangle. In particular,
the interpolation of any function uðnÞ defined in T is prescribed by

uðnÞ ¼ u1N1ðnÞ þ u2N2ðnÞ þ u3N3ðnÞ

where ui, for i ¼ 1;2;3, denote the values of the field u at vertices T1;T2 and T3, respectively, and where the well-known
shape functions NiðnÞ,

N1ðn1; n2Þ ¼ 1� n1 � n2;

N2ðn1; n2Þ ¼ n1;

N3ðn1; n2Þ ¼ n2;

8><
>:

verify the Kroenecker’s delta property.
Thus, the two mappings prescribing the domain transformation are

xðn;lÞ ¼ M1
lðnÞ :¼ x1ðlÞN1ðnÞ þ x3ðlÞN2ðnÞ þ x4ðlÞN3ðnÞ for X1;

xðn;lÞ ¼ M2
lðnÞ :¼ x1ðlÞN1ðnÞ þ x2ðlÞN2ðnÞ þ x3ðlÞN3ðnÞ for X2;

(

where xi, coordinates of points Pi for i ¼ 1; . . . ;4, are defined in (8). Note, that, in this case, only x3 depends on the parameters
l.

Consequently, the Jacobian related to M1
lðT Þ ¼ X1ðlÞ becomes:

J1 ¼
x3 � x1 y3 � y1

x4 � x1 y4 � y1

� �
¼

1þ l1 1þ l2

0 1

� �
;

and analogously for the transformation M2
lðT Þ ¼ X2ðlÞ
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J2 ¼
x2 � x1 y2 � y1

x3 � x1 y3 � y1

� �
¼

1 0
1þ l1 1þ l2

� �
:

Finally, for this particular case, det J1 ¼ 1þ l1 and det J2 ¼ 1þ l2, whose inverse can be written from a single functional
product.

These expressions for the Jacobian are substituted in (7), taking into account that the spatial forms are now integrated in
each element, for instance

ðJ�1rnu; J�1rndu det JÞXn
¼
X2

i¼1

ðJ�1
i rnu; J�1

i rndu det J iÞT :

3.3. Separated form approximation

Following Section 2 and more particularly Eq. (3), for this example, the model solution is approximated in the separated
form as

uðxÞ � unðxðn;lÞÞ ¼
Xn

s¼1

v sðnÞxs
1ðl1Þxs

1ðl2Þ ¼ un�1ðxðn;lÞÞ þ vðnÞx1ðl1Þx1ðl2Þ;

where the approximation unðxðn;lÞÞ is defined piecewise by its restriction to X1 and X2. As usual an incremental process is
designed where un�1 is assumed known while v ;x1 and x2 are the unknown functions to be determined with the standard
PGD approach. They are evaluated iterating with the three stages described in Section 2.

It is important to note that finite dimensional subspaces ofH1
CD

, L2ðI1Þ and L2ðI2Þmust be chosen to solve numerically the
problem. While any 1D discretization is possible for L2ðIiÞ, i ¼ 1;2, for the spatial discretization two alternatives are possible.
The first option to determine function v is to create a nested mesh of finite elements inside the triangles X1 and X2 used to
describe the geometry. That is the submesh for computations, which in this case is also composed by triangles, has no ele-
ments crossing the interface C ¼ X1 \X2. This is the best option because it induces optimal rates of convergence. Whereas
suboptimal rates of convergence, see [25], are induced by the second alternative, which consists in generating a mesh inde-
pendent of the macro triangles used to define the geometry and then assign to each Gauss point the corresponding Jacobian
of the transformation.

Here Ii :¼ ½�0:7;0:7� for i ¼ 1;2 and, consequently, an approximation of the solution is obtained for any geometry per-
turbing the upper-right corner of the unit square in this range along the horizontal and vertical directions. Fig. 2 depicts
the limit solutions obtained from ðl1;l2Þ ¼ ð�0:7;�0:7Þ and ðl1;l2Þ ¼ ð0:7;0:7Þ. Both solutions were compared with the
ones computed by using finite elements in both geometries and both agree with two significant digits; the L2 error over
the domain is 0:91 � 10�3 and 0:29 � 10�2.

4. General framework for domain dependence on PGD coordinates

To present the general approach for PGD problems where the geometry is described with parameters a simplified model
problem is studied. Without loss of generality, the problem statement is restricted to 2D with homogenous Dirichlet bound-
ary conditions, namely

�r � ru ¼ f in XðlÞ � R2;

n � ru ¼ t on CðlÞ;
u ¼ 0 on CDðlÞ :¼ @XðlÞ n CðlÞ;

8><
>: ð9Þ

where it is explicitly indicated the dependence of the computational domain and its boundary in the parameters l 2 Rm. The
classical weak problem equivalent to (9) is: find u 2 H1

CD
such that

ðru;rduÞX ¼ ðf ; duÞX þ ht; duiC 8du 2 H1
CD
: ð10Þ

Recall the definition of H1
CD

in Eq. (4).
Assume for simplicity that @XðlÞ is defined piecewise linearly, that is, @XðlÞ is a polygon. Moreover, assume that param-

eters l correspond to the (perturbation of the) coordinates of a subset of the vertices of that polygon. Note that no restriction
is imposed on this polygon (convexity, holes, etc.). Under these assumptions there exists a partition on n tg non overlapping
triangles covering the complete domain. Denote by Xe a general triangle, e ¼ 1; . . . ;ntg.

Remark 3. It is important to observe that perturbations in the position of one vertex only affect triangles connected to this
vertex. This locality of the perturbation will facilitate the separability among parameters l. It is obvious, that parameters
associated to vertices belonging to different triangles are independent.
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Following the same rationale as in standard finite elements based on triangular discretization, for each triangle Xe, there
is a linear mapping between the reference coordinates n 2 T and the physical ones x 2 Xe, i.e. x ¼Me

lðnÞ for e ¼ 1; . . . ;ntg. It
is crucial to note that, in each triangle, the Jacobian matrix, Je :¼ ½@x=@n� for e ¼ 1; . . . ;ntg, is ‘‘constant’’ (i.e. it does not de-
pend on n) and it is only dependent on l.

With these definitions, the weak problem (10), can be rewritten as

Xntg
e

ðru;rduÞXe
¼
Xntg

e

ðf ; duÞXe
þ
Xntg

e

ht; duiC\@Xe
8du 2 H1

CD
;

or more explicitly

Xntg
e

ðKernue;rndueÞT detðJeÞ ¼
Xntg

e

ðfe; dueÞT detðJeÞ þ
Xntg

e

hte; dueiC\@T detðJC
e Þ; ð11Þ

where Ke ¼ J�T
e J�1

e , ue ¼ ujXe
, rn is the gradient with respect to the reference coordinates in the reference triangle T , C \ @T

represent (symbolically) the edges of T where Neumann conditions are applied, and detðJC
e Þ the Jacobian along these edges.

Note that ue for e ¼ 1; . . . ;ntg cannot be approximated independently for each triangle because continuity must be ensured.
This new expression of the weak problem, see (11), hints a separable approximation of the solutions. Because, for every

e ¼ 1; . . . ;ntg, ue, due, fe, and te only depend on n whereas J�1
e (and consequently Ke), detðJeÞ and detðJC

e Þ only depend on l.
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Fig. 2. Solution of the thermal model for: (top) ðl1;l2Þ ¼ ð�0:7;�0:7Þ and (bottom) ðl1;l2Þ ¼ ð0:7;0:7Þ.
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Under these circumstances, the major hypothesis of the PGD approach, which assumes that the solution of (10) can be
approximated by a rank-n separable approximation, seems reasonable. This rank-n separable approximation is explicitly
written as

uðxÞ � unðxðn;lÞÞ ¼
Xn

s¼1

vsðnÞ
Ym
j¼1

xs
j ðljÞ;

¼ un�1ðxðn;lÞÞ þ vðnÞ
Ym
j¼1

xjðljÞ;
ð12Þ

where the approximation unðxðn;lÞÞ 2 H1
CD

is defined by each restriction to Xe for e ¼ 1; . . . ;ntg, and, in the following, un�1 is
assumed known while v and xj (with j ¼ 1; . . . ;m) are the unknown functions.

Since the new variables l prescribing the geometry are now seen as extra coordinates, the weak problem, see (10) and
(11), is now defined over a larger set of coordinates. In particular, (10) can be rewritten asZ

I1

Z
I2

� � �
Z

Im

ðru;rduÞXdl1dl2 . . . dlm ¼
Z

I1

Z
I2

� � �
Z

Im

ðf ; duÞXdl1dl2 . . . dlm þ
Z

I1

Z
I2

� � �
Z

Im

ht; duiCdl1dl2 . . . dlm;

where Ij is the range of parameter lj, for j ¼ 1; . . . ;m. More precisely, replacing (12) in (11) givesZ
I1

x1ðl1Þ
Z

I2

x2ðl2Þ � � �
Z

Im

xmðlmÞdetðJeÞ
Xntg

e

ðKernve;rndueÞT dl1dl2 . . . dlm ¼ rðduÞ; ð13aÞ

where rðduÞ is the residual evaluated for the n� 1 separation and defined as

rðduÞ ¼
Z

I1

Z
I2

� � �
Z

Im

detðJeÞ
Xntg

e

ðfe; dueÞT dl1dl2 . . . dlm þ
Z

I1

Z
I2

� � �
Z

Im

detðJC
e Þ
Xntg

e

hte; dueiC\@T dl1dl2 . . . dlm

�
Z

I1

Z
I2

� � �
Z

Im

detðJeÞ
Xntg

e

ðKernun�1;rndueÞT dl1dl2 . . . dlm: ð13bÞ

Note that once the test functions are also separated, recall (5b)

du ¼ dv
Ym
j¼1

xj þ
Xm

k¼1

v dxk

Ym
j¼1
j–k

xj;

the rationale of PGD exposed in Section 2 can be readily applied and the iterative process to determine v and x is automat-
ically determined.

5. Numerical results

In this section, the proposed approach is applied to more complex scenarios.

5.1. Quadrilateral with one parametrized edge

The first numerical experiment concerns problem (6) with a unitary source term on a domain XðlÞ obtained by perturb-
ing the rectangular domain Xð0Þ ¼�0;3½��0;1½. For this purpose, assume that @XðlÞ is described by the position of eight con-
trol points Pi, i ¼ 1; . . . ;8. Moreover, four of those control point are allowed to move vertically and the parameters describing

this perturbation are l ¼ ðl1;l2;l3;l4Þ
T . In this example li 2 Ii :¼ ½�0:3;0:3�, for i ¼ 1; . . . ;4. See Table 1 for the coordinates

of these points prescribing @XðlÞ.
In order to apply the procedure previously described consider the six triangles: X1 ¼ ðP1;P7;P8Þ, X2 ¼ ðP1;P2;P7Þ,

X3 ¼ ðP2;P6;P7Þ, X4 ¼ ðP2;P3;P6Þ, X5 ¼ ðP3;P5;P6Þ and X6 ¼ ðP3;P4;P5Þ, as depicted in Fig. 3.
The resulting solution separated representation involves 40 terms

uðxðn;lÞÞ �
X40

s¼1

vsðnÞ
Y4

j¼1

xs
j ðljÞ: ð14Þ

Functions xs
j ðljÞ were approximated using a 1D discretization consisting of 13 nodes uniformly distributed in the interval

½�0:3; 0:3�. Functions v sðnÞ were approximated using a nested mesh of linear finite element depicted in Fig. 4.
Fig. 5 depicts the first three functions vsðxÞ (i.e. s ¼ 1;2;3) and Fig. 6 also presents the first three functions xs

j ðljÞ, for
j ¼ 1; . . . ;4.

Fig. 7 compares the finite element solution obtained directly over a domain perturbed by l1 ¼ �0:15, l2 ¼ 0:3, l3 ¼ �0:3,
and l4 ¼ 0:3 and the results of a particularization of the PGD parametric solution for the same perturbation. The difference
between both solution was, using a L2 norm, of around 10�2. Moreover, Fig. 8 shows the evolution or the residual as a func-
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tion of the number of terms involved in the separated representation. Recall the definition of the residual in (13b). Notice
that Fig. 8 goes beyond the 40 terms used in all the comparisons presented here and also shows the residue up to 80. This
is done to illustrate that as the number of terms increases the error decreases depending on the optimality of the method and
the separability of the solution. Moreover, as also depicted in Fig. 8, the error between the PGD approximation and the direct
finite element (FE) approximation decreases with the number of terms. Note that for s ¼ 40 the difference between a post
processed PGD approximation and a FE solution is already below 10�4. Obviously, as the number of terms in the PGD approx-
imation is increased the error can be reduced. Note that, this off-line solution is the general thermal solution for any point in
space and any design parameter (geometric parameters). That is, a six-dimensional problem with 341 nodes in space and 13
nodes for each geometric parameter. Since four geometry parameters are used, only 45 s are needed in PGD to approximate
the solution of 134 ¼ 28561 configurations that would imply (when proceeding with standard techniques) the solution of
28561 two-dimensional spatial problems, each with 341 nodes, or, equivalently, a 6D problem with 9739301 number of
degrees of freedom, and the error compared to FE is below 10�4.

Finally, Fig. 9 depicts the finite element solutions and the particularized parametric PGD solutions for two other different
geometries. Again, both solutions agree to a great level of precision.

Obviously, adding more parameters as extra-coordinates is not a major issue, the strategy for building-up the separated
representation proceeds in the same manner, but because the solution is now richer, the separated representation involves
more terms. Assume now that XðlÞ is defined by 12 control points, and that, as previously, the position of the top ones, 6 in
this case is perturbed. See Table 2 for the coordinates of these points prescribing @XðlÞ and note that
l ¼ ðl1;l2;l3;l4;l5;l6Þ

T is such that li 2 Ii :¼ ½�0:3;0:3�, for i ¼ 1; . . . ;6. Fig. 10 depicts the triangulation for Xð0Þ.
The resulting solution separated representation involves 70 terms

uðxðn;lÞÞ �
X70

s¼1

v sðnÞ
Y6

j¼1

xs
j ðljÞ: ð15Þ

Fig. 11 compares the particularization of the general PGD approximation (15) when considering the geometry perturbed by
l1 ¼ �0:3, l2 ¼ 0:3, l3 ¼ 0:3, l4 ¼ �0:3, l5 ¼ 0:3, and l6 ¼ 0:3 with the finite element solution computed directly on the

Table 1
Coordinates of the points describing the boundary of the perturbed domain.

P1 P2 P3 P4 P5 P6 P7 P8

x 0 1 2 3 3 2 1 0
y 0 0 0 0 1þ l1 1þ l2 1þ l3 1þ l4

Fig. 3. Triangulation defining the geometrical transformation.

Fig. 4. Finite element nested mesh used to approximate the spatial functions v sðnÞ.
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perturbed domain. Again, both solutions are in perfect agreement. It is important to notice that also in this case all the inter-
vals Ii ¼ ½�0:3;0:3� for i ¼ 1; . . . ;6 are discretized with 13 uniformly distributed nodes. Thus, separated representation in Eq.
(15) represents the solution for 136 different geometries, that is, for 4826809 possible domain geometries.

5.2. First steps towards multi-criteria efficient shape optimization

This section is dedicated to show, in an academic problem, the advantages of a generalized (on-line) solution to address
optimization problems. As noted in the introduction, optimization problems rely on iterative procedures that require the
evaluation of an objective function (and/or multiple criteria). An efficient optimization scheme would reduce the number

Fig. 5. Three most significant spatial modes.
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Fig. 6. Three most significant parametric modes xs
j ðljÞ, for j ¼ 1; . . . ;4.

Fig. 7. Comparing the finite element solution (left) with the particularized PGD parametric solution (right).
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of iterations, however as the number of parameters and criteria increases the optimization processes becomes more and
more time-consuming. Obviously, such a methodology is extremely sensitive to the cost of evaluation a solution for a set
of parameters.

Suppose that the problem at hand requires to minimize the volume and maximize the heat flux along the top surface of
the quadrilateral problem described in Section 5.1. Consequently, the objective is to optimize the shape of the parametrized
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Fig. 8. Evolution of the total residual (left) and the error between PGD and FE (right) with the number of terms involved in the separated representation.

Fig. 9. Finite element (left) versus particularized PGD (right) solutions in two other geometries.
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quadrilateral domain minimizing volume VðlÞ and maximizing heat flux through the upper surface, CUp, defined by the seg-
ments joining points P5;P6;P7 and P8, namely

UðlÞ :¼
Z

CUpðlÞ
n � ruðxðn;lÞÞdC

Recall that l 2 I1 � � � � � I4 with Ii ¼ ½�0:3; 0:3� for i ¼ 1; . . . ;4. The optimization iterative process can be performed solving
for each iteration (for each set of parameters) problem (6) or evaluating for each iteration the approximated PGD solution
(14).

A first alternative to optimize the shape defined by l is to combine both objectives (volume and head flux) in one single
objective function. Consider for instance an objective function defined as

Costðl; kÞ ¼ kVðlÞ þ ð1� kÞð1=UðlÞÞ; ð16Þ

where the relative weight between both objectives, controlled by k, must be user-defined a priori.
This particular optimization problem does not present major difficulties and can be readily solved with a large number of

techniques for any given k 2�0;1½. Nevertheless, thanks to the PGD parametric solution, see the expression (14), a direct par-
ticularization of the parametric solution is readily obtained for each tentative value of the parameters at every iteration. This
not the case of standard procedures, they would require to solve problem (6) at every iteration with the new set of tentative
parameters. Moreover, with the PGD solution it is trivial to implement Newton’s method to find the stationary point of (16).
Whereas, classical approaches requiring the resolution of problem (6) at each iteration necessitate an extra effort to evaluate
sensitivities in order to construct the tangent matrix, see for instance [1].

For instance, for k ¼ 0:5, after some four Newton iterations the optimal values are obtained, namely

ð�0:6;�0:2;�0:6;�0:6Þ ¼ arg min
l2I1�����I4

Costðl; 0:5Þ:

Table 2
Coordinates of the points describing the boundary of the perturbed domain.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

x 0 1 2 3 4 5 5 4 3 3 1 0
y 0 0 0 0 0 0 1þ l1 1þ l2 1þ l3 1þ l4 1þ l5 1þ l6

Fig. 10. Triangulation defining the geometrical transformation.

Fig. 11. Comparison of the PGD and finite element approximations for XðlÞ perturbed by l1 ¼ �0:3, l2 ¼ 0:3, l3 ¼ 0:3, l4 ¼ �0:3, l5 ¼ 0:3, and l6 ¼ 0:3.
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The advantages of having a parametric solution of a problem, such as (6), are more evident in multiobjective optimization,
in particular, with the construction of Pareto’s fronts. Suppose, that for each parameter li, in this case, for i ¼ 1; . . . ;4 ten
values are used to sample the range Ii. The total number of possible geometries is 104. Particularizing the solution, see
(14), and then computing each objective, 104 times is not at all an expensive procedure. Thus for each possible geometry
defined by a given li for i ¼ 1; . . . ;104 the volume, VðliÞ, and the inverse of the flux 1=UðliÞ are readily evaluated. The result-
ing 104 points are depicted in Fig. 12. The convexity of the resulting cloud indicates that, in this case, the Pareto’s front can be
calculated by minimizing the cost function Costðl; kÞ, see (16), for any of k 2�0;1½. This methodology is extremely easy and fast
when the parametric solution is available. Fig. 13 depicts five points on the Pareto’s front.

6. Conclusions

This work is a first attempt at considering parametric models in which the parameters controlling the geometry are trea-
ted as extra-coordinates. An approximation of the solution is obtained invoking a Proper Generalized Decomposition. This
solution circumvents the curse of dimensionality do to the increased number of coordinates and induces an expression that
is readily used in any optimization procedure. Moreover, Pareto fronts are also efficiently computed in multi-objective
optimization.
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Fig. 12. Cloud of 104 design parameters in the multiobjective plane: VðlÞ versus 1=UðlÞ.
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Fig. 13. Five optimal solutions in the Pareto’s sense.
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A key ingredient is to overcome the difficulties related to the separated representation of the inverse of the Jacobian of the
transformation. They have been alleviated by considering simpler mappings, as the ones associated with linear triangles that
in many cases allows for exact separated representations of the inverse of the Jacobian.

The consideration of geometrical parameters coming for a CAD description or even the ones related to a isogeometric
description of the domain boundary constitutes some of the works in progress.
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